An infinite-dimensional representation of the Ray-Knight theorems  

在线阅读下载全文

作  者:Elie Aidékon Yueyun Hu Zhan Shi 

机构地区:[1]School of Mathematical Sciences,Fudan University,Shanghai 200433,China [2]LAGA,UniversitéSorbonne Paris Nord,Villetaneuse 93430,France [3]Institute of Applied Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

出  处:《Science China Mathematics》2024年第1期149-162,共14页中国科学(数学)(英文版)

基  金:supported by ANR MALIN。

摘  要:The classical Ray-Knight theorems for the Brownian motion determine the law of its local time process either at the first hitting time of a given value a by the local time at the origin,or at the first hitting time of a given position b by the Brownian motion.We extend these results by describing the local time process jointly for all a and b,by means of the stochastic integral with respect to an appropriate white noise.Our result applies toμ-processes,and has an immediate application:aμ-process is the height process of a Feller continuous-state branching process(CSBP)with immigration(Lambert(2002)),whereas a Feller CSBP with immigration satisfies a stochastic differential equation(SDE)driven by a white noise(Dawson and Li(2012));our result gives an explicit relation between these two descriptions and shows that the SDE in question is a reformulation of Tanaka’s formula.

关 键 词:Ray-Knight theorem μ-process white noise Tanaka's formula 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象