检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yang Yang Shaoying Chen Kam Chuen Yuen
机构地区:[1]School of Statistics and Data Science,Nanjing Audit University,Nanjing 211815,China [2]Department of Statistics and Actuarial Science,The University of Hong Kong,Hong Kong 999077,China
出 处:《Science China Mathematics》2024年第1期163-186,共24页中国科学(数学)(英文版)
基 金:supported by the Humanities and Social Sciences Foundation of the Ministry of Education of China(Grant No.20YJA910006);Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201396);supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China(Grant No.KYCX211939);supported by the Research Grants Council of Hong Kong;China(Grant No.HKU17329216)。
摘 要:This paper studies the joint tail behavior of two randomly weighted sums∑_(i=1)^(m)Θ_(i)X_(i)and∑_(j=1)^(n)θ_(j)Y_(j)for some m,n∈N∪{∞},in which the primary random variables{X_(i);i∈N}and{Y_(i);i∈N},respectively,are real-valued,dependent and heavy-tailed,while the random weights{Θi,θi;i∈N}are nonnegative and arbitrarily dependent,but the three sequences{X_(i);i∈N},{Y_(i);i∈N}and{Θ_(i),θ_(i);i∈N}are mutually independent.Under two types of weak dependence assumptions on the heavy-tailed primary random variables and some mild moment conditions on the random weights,we establish some(uniformly)asymptotic formulas for the joint tail probability of the two randomly weighted sums,expressing the insensitivity with respect to the underlying weak dependence structures.As applications,we consider both discrete-time and continuous-time insurance risk models,and obtain some asymptotic results for ruin probabilities.
关 键 词:asymptotic joint tail behavior randomly weighted sum heavy-tailed distribution DEPENDENCE insurance risk model
分 类 号:O213[理学—概率论与数理统计] F840[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33