A convolutional neural network to detect possible hidden data in spatial domain images  

在线阅读下载全文

作  者:Jean De La Croix Ntivuguruzwa Tohari Ahmad 

机构地区:[1]Department of Informatics,Institut Teknologi Sepuluh Nopember(ITS),Kampus ITS Keputih Sukolilo,Surabaya,60111,Indonesia [2]African Center of Excellence in the Internet of Things,College of Science and Technology,University of Rwanda,3900,Kigali,Rwanda

出  处:《Cybersecurity》2024年第1期37-52,共16页网络空间安全科学与技术(英文)

基  金:supported by the Ministry of Education,Culture,Research and Technology,The Republic of Indonesia,and Institut Teknologi Sepuluh Nopember.

摘  要:Hiding secret data in digital multimedia has been essential to protect the data.Nevertheless,attackers with a steganalysis technique may break them.Existing steganalysis methods have good results with conventional Machine Learning(ML)techniques;however,the introduction of Convolutional Neural Network(CNN),a deep learning paradigm,achieved better performance over the previously proposed ML-based techniques.Though the existing CNN-based approaches yield good results,they present performance issues in classification accuracy and stability in the network training phase.This research proposes a new method with a CNN architecture to improve the hidden data detection accuracy and the training phase stability in spatial domain images.The proposed method comprises three phases:pre-processing,feature extraction,and classification.Firstly,in the pre-processing phase,we use spatial rich model filters to enhance the noise within images altered by data hiding;secondly,in the feature extraction phase,we use two-dimensional depthwise separable convolutions to improve the signal-to-noise and regular convolutions to model local features;and finally,in the classification,we use multi-scale average pooling for local features aggregation and representability enhancement regardless of the input size variation,followed by three fully connected layers to form the final feature maps that we transform into class probabilities using the softmax function.The results identify an improvement in the accuracy of the considered recent scheme ranging between 4.6 and 10.2%with reduced training time up to 30.81%.

关 键 词:Information security Spatial domain steganalysis Deep learning Convolutional neural network INFRASTRUCTURE 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象