检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Feng Guo Zheng Sun Yuxuan Chen Lei Ju
机构地区:[1]School of Cyber Science and Technology,Shandong University,Qingdao,China [2]Quancheng Laboratory,QCL,Jinan,China
出 处:《Cybersecurity》2024年第1期53-70,共18页网络空间安全科学与技术(英文)
基 金:supported in part by NSFC No.62202275,Shandong-SF No.ZR2022QF012 projects.
摘 要:Recently,studies show that deep learning-based automatic speech recognition(ASR)systems are vulnerable to adversarial examples(AEs),which add a small amount of noise to the original audio examples.These AE attacks pose new challenges to deep learning security and have raised significant concerns about deploying ASR systems and devices.The existing defense methods are either limited in application or only defend on results,but not on process.In this work,we propose a novel method to infer the adversary intent and discover audio adversarial examples based on the AEs generation process.The insight of this method is based on the observation:many existing audio AE attacks utilize query-based methods,which means the adversary must send continuous and similar queries to target ASR models during the audio AE generation process.Inspired by this observation,We propose a memory mechanism by adopting audio fingerprint technology to analyze the similarity of the current query with a certain length of memory query.Thus,we can identify when a sequence of queries appears to be suspectable to generate audio AEs.Through extensive evaluation on four state-of-the-art audio AE attacks,we demonstrate that on average our defense identify the adversary’s intent with over 90%accuracy.With careful regard for robustness evaluations,we also analyze our proposed defense and its strength to withstand two adaptive attacks.Finally,our scheme is available out-of-the-box and directly compatible with any ensemble of ASR defense models to uncover audio AE attacks effectively without model retraining.
关 键 词:Adversarial attacks DEFENSE Memory mechanism Query-based
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49