检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Journal of Rare Earths》2024年第1期66-75,I0003,共11页稀土学报(英文版)
基 金:Project supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A10044154)。
摘 要:We investigated the emission properties of Eu^(3+)-doped GdNbO_(4)-based oxide phosphors,aiming at improving the Eu^(3+)emission by codoping of Bi^(3+)and Li^(+).Eu^(3+)singly doped,Eu^(3+)and Bi^(3+)doubly doped,and Eu^(3+),Bi^(3+),and Li^(+)triply doped GdNbO_(4)were prepared using a high-temperature solid-state reaction method.The red-orange emissions from Eu^(3+)in the singly doped samples are significantly improved by the codoping of Bi^(3+),mainly due to the energy transfer from Bi^(3+)to Eu^(3+).The additional codoping of Li^(+)is found to increase the Eu^(3+)emission significantly.This improvement might be attributed to the increase in the photoluminescent quantum yield originating from larger grain sizes and better crystallinity.A detailed analysis of the X-ray diffraction pattern and the asymmetric ratio estimated from the photoluminescence spectra show that the local lattice environment around Eu^(3+)in GdNbO_(4)does not change significantly with the codoping of Bi^(3+)and Li^(+).Our results indicate that Li^(+)doping is a promising way to improve the emission properties of rare-earth ion-doped GdNbO_(4)phosphors.
关 键 词:Eu^(3+) GdNbO_(4) Codoping of Li^(+) Photoluminescence SENSITIZER Rare earths
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200