Harris Hawks Algorithm Incorporating Tuna Swarm Algorithm and Differential Variance Strategy  

在线阅读下载全文

作  者:XU Xiaohan YANG Haima ZHENG Heqing LI Jun LIU Jin ZHANG Dawei HUANG Hongxin 

机构地区:[1]College of Optoelectronic Information and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China [2]School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China

出  处:《Wuhan University Journal of Natural Sciences》2023年第6期461-473,共13页武汉大学学报(自然科学英文版)

基  金:Supported by Key Laboratory of Space Active Opto-Electronics Technology of Chinese Academy of Sciences(2021ZDKF4);Shanghai Science and Technology Innovation Action Plan(21S31904200,22S31903700)。

摘  要:Because of the low convergence accuracy of the basic Harris Hawks algorithm,which quickly falls into the local optimal,a Harris Hawks algorithm combining tuna swarm algorithm and differential mutation strategy(TDHHO)is proposed.The escape energy factor of nonlinear periodic energy decline balances the ability of global exploration and regional development.The parabolic foraging approach of the tuna swarm algorithm is introduced to enhance the global exploration ability of the algorithm and accelerate the convergence speed.The difference variation strategy is used to mutate the individual position and calculate the fitness,and the fitness of the original individual position is compared.The greedy technique is used to select the one with better fitness of the objective function,which increases the diversity of the population and improves the possibility of the algorithm jumping out of the local extreme value.The test function tests the TDHHO algorithm,and compared with other optimization algorithms,the experimental results show that the convergence speed and optimization accuracy of the improved Harris Hawks are improved.Finally,the enhanced Harris Hawks algorithm is applied to engineering optimization and wireless sensor networks(WSN)coverage optimization problems,and the feasibility of the TDHHO algorithm in practical application is further verified.

关 键 词:Harris Hawks optimization nonlinear periodic energy decreases differential mutation strategy wireless sensor networks(WSN)coverage optimization results 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象