基于双边滤波和AGAST-BEBLID的图像匹配算法  被引量:1

Image Matching Algorithm Based on Bilateral Filtering and AGAST-BEBLID

在线阅读下载全文

作  者:谷学静 刘威威 GU Xuejing;LIU Weiwei(College of Electrical Engineering,North China University of Science and Technology,Tangshan 063210,CHN;Tangshan Digital Media Engineering Technology Research Center,Tangshan 063000,CHN)

机构地区:[1]华北理工大学电气工程学院,河北唐山063210 [2]唐山市数字媒体工程技术研究中心,河北唐山063000

出  处:《半导体光电》2023年第6期919-923,共5页Semiconductor Optoelectronics

基  金:唐山市沉浸式虚拟环境三维仿真基础创新团队项目(18130221A)。

摘  要:针对传统AGAST特征匹配算法存在精度差、鲁棒性低等问题,提出一种基于双边滤波和AGAST-BEBLID的图像匹配算法。首先使用双边滤波进行去噪和增强图像边缘细节效果。其次使用BEBLID算法在特征提取阶段创建高效二进制描述子,来产生更好的局部特征描述。然后使用GMS算法结合汉明距离来筛选KNN匹配后的图像,达到特征粗匹配。最后使用GC-RANSAC算法在误匹配剔除阶段进行局部最优模型拟合,得到图像特征精匹配。实验结果显示:改进后的算法在复杂环境下的总体平均准确率较AKAZE,BRISK和SIFT分别提高了10.57%,17.20%和19.45%。Aiming at the problems of poor accuracy and low robustness of traditional AGAST feature matching algorithm,an image matching algorithm based on bilateral filtering and AGAST-BEBLID is proposed.Firstly,bilateral filtering was used to de-noise and enhance the image edge detail effect.Secondly,BEBLID algorithm was used to create efficient binary descriptors in the feature extraction stage to generate better local feature descriptions.Then GMS algorithm combined with Hamming distance was used to filter the KNN matched images to achieve coarse feature matching.Finally,GC-RANSAC algorithm was used to fit the local optimal model in the mismatching elimination stage,and the image features were accurately matched.The experimental results show that the overall average accuracy of the improved algorithm in complex environments is 10.57%,17.20%,and 19.45%higher than AKAZE,BRISK and SIFT respectively.

关 键 词:图像匹配 BEBLID AGAST GMS GC-RANSAC 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象