基于遗传算法优化C-LSTM模型的心律失常分类方法  被引量:1

Arrhythmia classification method based on genetic algorithm optimization of C-LSTM model

在线阅读下载全文

作  者:王巍[1] 丁辉 夏旭 吴浩 张迎 郭家成 WANG Wei;DING Hui;XIA Xu;WU Hao;ZHANG Ying;GUO Jiacheng(School of Optoelectronic Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)

机构地区:[1]重庆邮电大学光电工程学院,重庆400065

出  处:《中国医学物理学杂志》2024年第2期233-240,共8页Chinese Journal of Medical Physics

基  金:重庆市科技局产业化项目(CSTC2018JSZX-CYZTZX0211,CSTC2018JSZX-CYZTZX0048)。

摘  要:结合遗传算法全局寻优的特点提出一种GC-LSTM模型,该模型通过特定遗传策略的遗传算法自动迭代搜寻C-LSTM模型最佳超参数配置。利用遗传迭代结果配置模型,并按照医疗仪器促进协会制定分类标准在MIT-BIH心律失常数据库上进行验证。经过测试,本文提出的GC-LSTM模型在分类准确率(99.37%)、灵敏度(95.62%)、精确度(95.17%)、F1值(95.39%)上相较于手动搭建模型均有所提升,且与现有主流方法相比亦具备一定优势。实验结果表明该方法在避免大量实验调参的同时取得较好的分类性能。A GC-LSTM model is proposed based on the characteristics of global optimization of genetic algorithm.The model automatically and iteratively searches the optimal hyper-parameter configuration of the C-LSTM model through the genetic algorithm of a specific genetic strategy,and it is configured using the genetic iteration results and validated on the MIT-BIH arrhythmia database according to the classification criteria of the Association for the Advancement of Medical Instrumentation.The testing shows that the classification accuracy,sensitivity,accuracy and F1 value of GC-LSTM model are 99.37%,95.62%,95.17% and 95.39%,respectively,higher than those of the manually established model,and it is also advantageous over the existing mainstream methods.Experimental results demonstrate that the proposed method can achieve better classification performance while avoiding a large number of experimental parameters.

关 键 词:心律失常分类 遗传算法 GC-LSTM模型 超参数 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象