检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宁方立[1] 王珂 郝明阳 NING Fangli;WANG Ke;HAO Mingyang(School of Mechanical Engineering,Northwestern Polytechnical University,Xi’an 710072,China)
出 处:《振动与冲击》2024年第3期158-163,170,共7页Journal of Vibration and Shock
基 金:国家自然科学基金(52075441);陕西省重点研发计划(2020ZDLGY06-09,2018GY-181);航空科学基金(20200015053001);西安市2023重点产业链技术攻关项目(23ZDCYJSGG0006-2023)。
摘 要:针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像作为卷积神经网络的输入,用于隐式提取图像的深层特征,其输出作为视觉转换器的输入。视觉转换器用于提取信号的时间序列信息。并在输出层利用Softmax函数实现故障模式的识别。试验结果表明,该方法对于轴承故障诊断准确率较高。为了更好解释和优化提出的轴承故障诊断方法,利用t-分布领域嵌入算法对分类特征进行了可视化展示。Here,aiming at characteristics of low data volume and non-stationary fault signals in bearing fault diagnosis tasks,a bearing fault diagnosis method combining short-term Fourier transform(SFT),convolutional neural network(CNN)and vision transformer(ViT)was proposed.Firstly,the original acoustic signal was transformed into a time-frequency image containing timing information and frequency information using SFT.Secondly,the time-frequency image was taken as input of CNN to implicitly extract deep features of the image,and CNN output was taken as input of ViT.ViT was used to extract signal time series information.In ViT output layer,Softmax function was used to identify bearing fault modes.The experimental results showed that the proposed method has a higher accuracy in diagnosing bearing faults.In order to better explain and optimize the proposed bearing fault diagnosis method,the t-distributed stochastic neighbor embedding algorithm was used to visualize classification features.
关 键 词:短时傅里叶变换 卷积神经网络 视觉转换器 t-分布领域嵌入算法
分 类 号:TH133.33[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15