某航空发动机短舱防冰腔流动与换热仿真  被引量:1

Simulation of a Short-cabin Anti-ice Chamber Flow and Heat Exchange of an Aero-engine

在线阅读下载全文

作  者:徐宁 徐之太 管宁 Xu Ning;Xu Zhitai;Guan Ning(Shandong Jiaotong University,Jinan,China;CCCC First Public Bureau Electrification Engineering Co.,Ltd.,Beijing,China)

机构地区:[1]山东交通学院,山东济南 [2]中交一公局电气化工程有限公司,北京

出  处:《科学技术创新》2024年第6期47-50,共4页Scientific and Technological Innovation

基  金:山东省自然科学基金项目(ZR2022MA075);飞行器环境控制与生命保障工业和信息化部重点实验室开放课题资助(KLAECLS-E-202203)。

摘  要:本文以发动机唇口的热气防冰为研究对象,建立了三维模型,通过对不同引气速度、引气温度下防冰腔内流动及传热的计算,定量分析了上述参数对防冰有效性的影响。通过研究发现,引气速度从10 m/s增加至40 m/s,防冰表面最低温度由266.4 K升至286.2 K;而当引气温度从100℃增加到130℃时,防冰表面最低温度则由286.2 K升至307.1 K。因此当引气速度不低于15 m/s、来流温度不低于380 K时,可以实现短舱唇口的有效防冰。This study focuses on the thermal anti-icing of the engine nacelle inlet lip.A three-dimensional model was established to quantitatively analyze the effects of different bleed air velocities and temperatures on the flow and heat transfer within the anti-icing cavity.By conducting calculations,it was found that increasing the bleed air velocity from 10 m/s to 40 m/s resulted in a decrease in the minimum temperature on the anti-icing surface from 266.4 K to 286.2 K.Similarly,increasing the bleed air temperature from 100℃to 130℃raised the minimum temperature on the anti-icing surface from 286.2 K to 307.1 K.Therefore,effective anti-icing of the engine nacelle inlet lip can be achieved when the bleed air velocity is not lower than 15 m/s and the incoming flow temperature is not lower than 380 K.

关 键 词:飞机防冰 发动机唇口 防冰腔 对流换热 

分 类 号:V244.15[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象