检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋鹏 胡轶佳 钟中 孙源[1] 吕硕 JIANG Peng;HU Yijia;ZHONG Zhong;SUN Yuan;L Shuo(College of Meteorology and Oceanography,National University of Defense Technology,Nanjing 211101,China;Jiangsu Collaborative Innovation Center for Climate Change,Nanjing University,Nanjing 210023,China)
机构地区:[1]国防科技大学气象海洋学院,南京211101 [2]南京大学江苏省气候变化协同创新中心,南京210023
出 处:《气象科学》2023年第5期569-577,共9页Journal of the Meteorological Sciences
基 金:国家重点研发计划项目(2018YFC1505803);国家自然科学基金资助项目(41675077,42075035)。
摘 要:将前冬的500 hPa位势高度、向外长波辐射和海表温度的年际增量作为预测因子,建立基于卷积神经网络(Convolutional Neural Network,CNN)的非线性预测模型,对中国160个测站夏季降水展开预测研究,并与基于线性奇异值分解(Singular Value Decomposition,SVD)的预测模型进行效果对比。结果表明:CNN在1981-2020年的交叉检验中所回报的降水平均PS评分和距平相关系数(ACC)分别为74.33和0.12,比SVD高2.15和0.06,说明CNN比SVD在整体上对夏季降水具有更好的预测能力。其中,CNN对SVD预测较好年份的预测效果提升较为明显,对SVD预测较差的年份则改进不大。CNN对中国降水预测存在一定的系统性偏差,订正后CNN对拉尼娜年的降水预测改进较大。结果表明,基于年际增量法的CNN预测模型展示出较好的潜在应用价值。With the year-to-year increment of 500 hPa geopotential height,outgoing long radiation and sea surface temperature,a nonlinear model was established to predict the summer precipitation of 160 stations in China based on Convolutional Neural Network(CNN),and the effects with the prediction model were compared based on linear Singular Value Decomposition(SVD).Results show that CNN s average PS score and Anomaly Correlation Coefficient(ACC)in the past 1981-2020’s cross test was 74.33 and 0.12,which was 2.15 and 0.06 higher than SVD.It reflects that CNN has better prediction ability of summer precipitation than SVD on the whole.CNN has significantly improved the prediction effect in the years with SVD s good prediction,but not in the years with SVD s poor prediction.CNN has some systematic deviation in China s precipitation forecast,and after revision the forecast of rainfall in La Ni a years has been improved better.Results show that the CNN prediction model based on the year-to-year increment approach reflects a good potential application value.
关 键 词:中国夏季降水预测 机器学习 年际增量法 卷积神经网络 奇异值分解
分 类 号:P457.6[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.236