检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马妞妞 刘翠霞[1] 坚增运[1] MA Niuniu;LIU Cuixia;JIAN Zengyun(School of Materials Science and Chemical Engineering,Xi’an Technological University,Xi’an 710021,China)
机构地区:[1]西安工业大学材料与化工学院,西安710021
出 处:《西安工业大学学报》2024年第1期69-78,共10页Journal of Xi’an Technological University
基 金:陕西省科技厅自然科学研究计划项目(2021JM-430)。
摘 要:针对传统高熵合金制备试验成本高、周期长、不可控因素等问题,文中通过机器学习模型进行高熵合金相阶段预测,进行了多分类和多标签分类,利用主流机器学习算法进行建模,并通过特征重要性分析及超参数调优进行比较,探究了不同算法对预测结果的影响。研究结果表明:多分类支持向量机(SVM)达到0.86的准确率,多标签随机森林(RF)达到了0.94的准确率;机器学习可以提供可靠的合成特性特性,在合金合成时,电负性(Δχ)和价电子浓度(VEC)可作为主要考虑因素。高熵合金和机器学习的结合有望为改进合金系统的设计提供参考。The preparation and test of traditional high-entropy alloys have the disadvantages of higher cost,longer cycle and some uncontrollable factors.To overcome these problems,the paper presents phase prediction of high-entropy alloys by machine learning models.Multi-classification and multi-label classification are done,and modeling is carried out by the commonly used machine learning algorithms.By analyzing the feature importance and comparing the hyper-parameter tuning,the influence of different algorithms on the prediction results are discussed.The results show that the accuracy of multi-classification support vector machine(SVM)was 0.86 and of multi-label random forest(RF)0.94.Machine learning can offer reliable synthetic property characterization,and electronegativity(Δχ)and valence electron concentration(VEC)can be the main factors to be considered in alloy synthesis.The combination of high-entropy alloys and machine learning is expected to provide references for improving the design of alloy systems.
分 类 号:TG113[金属学及工艺—物理冶金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118