检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于洋 王同文 汪伟 杨瑞金 YU Yang;WANG Tongwen;WANG Wei;YANG Ruijin(Power Dispatching and Control Center,State Grid Anhui Electric Power Co.,Ltd.,Hefei 230022,China;Super High Voltage Branch,State Grid Anhui Electric Power Co.,Ltd.,Hefei 230009,China)
机构地区:[1]国网安徽省电力有限公司电力调度控制中心,安徽合肥230022 [2]国网安徽省电力有限公司超高压分公司,安徽合肥230009
出 处:《电子设计工程》2024年第5期113-117,共5页Electronic Design Engineering
基 金:国网安徽省电力有限公司科技项目(52120021N00L)。
摘 要:为了提升变电站的数字化水平、提高故障的识别精度,文中对继电保护装置故障的智能检测算法进行了研究,并设计了一种基于灰色关联分析的堆栈编码器网络(GRA-SAE)。该网络以自动编码器为基本单元,可实现数据的自动化特征提取。通过支持向量机(SVM)对提取的特征进行分类识别,并引入灰色关联分析法优化了传统SAE算法中隐藏节点的结构,从而提升了算法的拟合能力。在自建数据集上进行的仿真结果表明,相较于SAE-SVM算法,该算法对异常数据与线路故障的识别精度分别提升了4%和10.27%,证明了GRA-SAE-SVM算法在复杂分类场景下具有更显著的优势。In order to improve the digitization level of the substation and improve the accuracy of fault identification,the intelligent detection algorithm of relay protection device fault is studied in this paper.A stacked autoencoder network based on(GRA-SAE)is designed.The network takes the automatic encoder as the basic unit and can realize the automatic feature extraction of data.The Support Vector Machine(SVM)algorithm is used to classify and recognize the extracted features.The structure of hidden nodes in the traditional SAE algorithm is optimized by introducing the grey correlation analysis algorithm,which improves the fitting ability of the algorithm.The simulation results on the self built data set show that,compared with SAE-SVM algorithm,the recognition accuracy of this algorithm for abnormal data is improved by 4%,and that for line fault is improved by 10.27%,which proves that GRA-SAE-SVM algorithm has more obvious advantages in complex classification scenarios.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.207.192