基于多维关联规则的用电负荷智能预测方法  被引量:4

Intelligent prediction method of electricity load based on multi⁃dimensional association rules

在线阅读下载全文

作  者:邹晖 李金灿 卢万平 ZOU Hui;LI Jincan;LU Wanping(Guangxi Power Grid Co.,Ltd.,Nanning 530000,China;Hechi Power Supply Bureau of Guangxi Power Grid Co.,Ltd.,Hechi 547000,China)

机构地区:[1]广西电网有限责任公司,广西南宁530000 [2]广西电网有限责任公司河池供电局,广西河池547000

出  处:《电子设计工程》2024年第5期122-126,共5页Electronic Design Engineering

摘  要:用电负荷预测受到冗余数据影响,负荷预测值与实际值相差较大,因此提出基于多维关联规则的用电负荷智能预测方法。使用多维关联规则挖掘用电负荷频繁项集,获取全部用电负荷待预测数据,根据挖掘结果划分用电负荷种类。计算多维关联规则提升度,预处理冗余数据,生成待预测目标集。根据获取的用电序列,整合全部频繁项集,构建预测模型,并进行强关联学习。通过调整负荷数据训练收敛程度,获取用电负荷的最大、最小值。在用电设备节点中注入用电负荷预测多维关联规则修正数值,避免噪声数据影响预测结果。实验结果表明,该方法最大、最小负荷与实际数据,分别在9月30日和6月15日存在5 MW和0.3 MW的误差,说明该方法预测结果精准。Electricity load prediction is affected by redundant data,and the load prediction value is different from the actual value.For this reason,an intelligent prediction method of electricity consumption based on multi-dimensional association rules is proposed.Use multi-dimensional association rules to mine frequent itemsets of electricity load,obtain all the data to be predicted of electricity load,and divide the type of electricity load according to the mining results.Calculate the lifting degree of multi-dimensional association rules,preprocess redundant data,and generate target sets to be predicted.According to the obtained electricity consumption sequence,integrate all frequent itemsets,build a prediction model,and perform strong association learning.By adjusting the training convergence degree of the load data,the maximum and minimum values of the electricity load are obtained.The correction value of multi-dimensional association rules for electricity load forecasting is injected into the electrical equipment nodes to avoid noise data affecting the forecasting results.The experimental results show that the maximum and minimum loads of this method and the actual data have errors of 5 MW and 0.3 MW on September 30 and June 15,respectively,indicating that the prediction results of this method are accurate.

关 键 词:多维关联规则 用电负荷 智能预测 数据修正 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论] TN06[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象