基于人工智能的海量电网GIS数据动态调度方法  

Dynamic scheduling method for massive power grid GIS data based on artificial intelligence

在线阅读下载全文

作  者:买合布拜·肖开提 薛高倩 雪拉提·司马义 吕娜 MAIHEBUBAI Xiaokaiti;XUE Gaoqian;XUELATI Simayi;LV Na(Information and Communication Company,State Grid Xinjiang Electric Power Co.,Ltd.,Urumqi 830002,China)

机构地区:[1]国网新疆电力有限公司信息通信公司,新疆乌鲁木齐830002

出  处:《电子设计工程》2024年第5期146-149,155,共5页Electronic Design Engineering

摘  要:针对电网GIS数据量大,导致数据调度结果不理想、调度响应时间过长的问题,提出了基于人工智能的海量电网GIS数据动态调度方法。压缩海量电网GIS数据,使用人工智能调度的神经网络方法,构建误差修补函数,修改神经网络权值,生成人工智能调度模型。在R树数据结构下对所有数据进行缓存,改变当前视野范围,并将查询到的压缩数据以格式字符串形式返回给客户端。结合人工智能调度的数据动态渲染方法,实现了基础地理和电网设备符号的实时绘制,缩短了数据动态调度响应时间,由此完成数据动态调度。实验结果表明,所提方法与实际数据存在最大为10 kB的误差,且调度响应时间为100 s,具有较好的调度效果,能够有效缩短调度响应时间。In view of the large amount of GIS data in power grid,which leads to unsatisfactory data scheduling results and long scheduling response time,a dynamic scheduling method of massive GIS data in power grid based on artificial intelligence is proposed.Compress the massive GIS data of power grid,use the neural network method of artificial intelligence dispatching,build the error repair function,modify the neural network weights,and generate the artificial intelligence dispatching model.Cache all data under the R-tree data structure,change the current field of view,and return the queried compressed data to the client in the form of format string.Combined with the data dynamic rendering method of artificial intelligence scheduling,the real-time rendering of basic geography and power grid equipment symbols is realized,and shortening the response time of data dynamic scheduling,thereby completing data dynamic scheduling.The experimental results show that the maximum error between the proposed method and the actual data is 10 kB,and the scheduling response time is 100 s,which has a good scheduling effect and can effectively shorten the scheduling response time.

关 键 词:人工智能 电网GIS数据 动态调度 神经网络 

分 类 号:TN923[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象