Adaptive Segmentation for Unconstrained Iris Recognition  

在线阅读下载全文

作  者:Mustafa AlRifaee Sally Almanasra Adnan Hnaif Ahmad Althunibat Mohammad Abdallah Thamer Alrawashdeh 

机构地区:[1]Faculty of Architecture and Design,Al-Zaytoonah University of Jordan,Amman,11733,Jordan [2]Faculty of Computer Studies,Arab Open University,Riyadh,11681,Saudi Arabia [3]Faculty of Science and Information Technology,Al-Zaytoonah University of Jordan,Amman,11733,Jordan

出  处:《Computers, Materials & Continua》2024年第2期1591-1609,共19页计算机、材料和连续体(英文)

基  金:The authors extend their appreciation to the Arab Open University,Saudi Arabia,for funding this work through AOU research fund No.AOURG-2023-009.

摘  要:In standard iris recognition systems,a cooperative imaging framework is employed that includes a light source with a near-infrared wavelength to reveal iris texture,look-and-stare constraints,and a close distance requirement to the capture device.When these conditions are relaxed,the system’s performance significantly deteriorates due to segmentation and feature extraction problems.Herein,a novel segmentation algorithm is proposed to correctly detect the pupil and limbus boundaries of iris images captured in unconstrained environments.First,the algorithm scans the whole iris image in the Hue Saturation Value(HSV)color space for local maxima to detect the sclera region.The image quality is then assessed by computing global features in red,green and blue(RGB)space,as noisy images have heterogeneous characteristics.The iris images are accordingly classified into seven categories based on their global RGB intensities.After the classification process,the images are filtered,and adaptive thresholding is applied to enhance the global contrast and detect the outer iris ring.Finally,to characterize the pupil area,the algorithm scans the cropped outer ring region for local minima values to identify the darkest area in the iris ring.The experimental results show that our method outperforms existing segmentation techniques using the UBIRIS.v1 and v2 databases and achieved a segmentation accuracy of 99.32 on UBIRIS.v1 and an error rate of 1.59 on UBIRIS.v2.

关 键 词:Image recognition color segmentation image processing LOCALIZATION 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象