检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏玮[1] 邱爽 李叙锦 毛嘉宇 王妍紫 何晖光[1,2] WEI Wei;QIU Shuang;LI Xujin;MAO Jiayu;WANG Yanzi;HE Huiguang(Laboratory of Brain Atlas and Brain-inspired Intelligence,State Key Laboratory of Multimodal Artificial Intelligence Systems,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院自动化研究所多模态人工智能系统全国重点实验室脑图谱与类脑智能实验室,北京100190 [2]中国科学院大学,北京100049
出 处:《电子与信息学报》2024年第2期443-455,共13页Journal of Electronics & Information Technology
基 金:国家自然科学基金(62206285,U21A20388,62020106015);中国博士后科学基金(2021M703490)。
摘 要:脑-机接口(BCI)系统建立大脑与外部设备之间的直接交流通路,结合快速序列视觉呈现(RSVP)范式能够实现利用人类视觉系统进行高流通量图像目标检索。近些年来,RSVP-BCI系统在范式编码、脑电(EEG)解码和系统应用方面的研究取得了长足的进步。对范式编码的研究揭示不同范式参数对系统性能的影响,促进提升系统性能;脑电解码的研究在提升算法分类性能的同时推动少训练、零训练样本、多模态等场景下的应用;对RSVP-BCI系统应用的研究实现推动系统走向实际应用并拓宽了应用领域。同时,系统仍面临着迈向实际时可应用领域范围窄、脑电跨域解码难题以及计算机视觉飞速进步带来的挑战。该文对RSVP-BCI近年来的相关研究进展进行了回顾与总结,并对未来的发展方向进行了展望。Brain-Computer Interface(BCI)system establishes a direct communication pathway between the brain and external devices,and combined with the Rapid Serial Visual Presentation(RSVP)paradigm,it can achieve high-throughput target image retrieval by utilizing the human visual system.In recent years,the RSVP-BCI system has made significant progress in research on paradigm,ElectroEncephaloGram(EEG)decoding,and system applications.Research on paradigm reveals the impact of different paradigm parameters on system performance,promoting the improvement of system performance;The research on EEG decoding improves the classification performance of algorithms and promotes applications in scenarios such as few training,zero training samples,and multimodality;The research on the RSVP-BCI system application has driven the system towards practical applications and expanded its application fields.However,the system also faces challenges such as limited practical applications,difficulties in cross-domain decoding of EEG,and the rapid progress of computer vision.This article reviews and summarizes the research progress of RSVP-BCI in recent years,and looks forward to the future development direction.
分 类 号:TN911.7[电子电信—通信与信息系统] TP391[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222