基于双域标记的视频鲁棒可逆水印算法  

Dual Embedding Domain Based Video Robust Reversible Watermarking Algorithm

在线阅读下载全文

作  者:钮可[1,2] 梁钰承[1] 孟逸飞 汪晶晶 NIU Ke;LIANG Yucheng;MENG Yifei;WANG Jingjing(College of Cryptographic Engineering,Engineering University of PAP,Xi'an 710086,China;Key Laboratory of Information Security of PAP,Xi'an 710086,China)

机构地区:[1]武警工程大学密码工程学院,西安710086 [2]武警部队网络与信息安全重点实验室,西安710086

出  处:《信息网络安全》2024年第2期239-251,共13页Netinfo Security

基  金:国家自然科学基金[62202496,62272478];武警工程大学基础前沿创新项目[WJY202314,WJY202221]。

摘  要:针对现有视频水印算法无法兼顾鲁棒性与可逆性的问题,文章提出一种基于双域标记的视频鲁棒可逆水印算法。该算法在H.264视频编码中的量化DCT系数域利用传统鲁棒水印拼接技术,嵌入水印信息;在运动矢量域利用二维直方图迁移技术,嵌入辅助信息,实现解码端的水印提取与原始视频的无损恢复。实验结果表明,文章算法具有良好的不可见性,实验视频的峰值信噪比与结构相似度均值分别为44.7537 dB与0.9902,比特率扩张均在16.74%以下,同时对不同强度的失真攻击均具有强鲁棒性,实验视频的归一化互相关系数均在0.970以上,误码率均在0.068以下。Aiming at the compatibility problem of robustness and reversibility of existing video watermarking algorithms,a video robust reversible watermarking algorithm based on dual-domain marking was proposed.This algorithm used traditional robust watermark splicing technology to embed watermark information in the quantized DCT coefficient domain of H.264 video coding;it used two-dimensional histogram migration technology in the motion vector domain to embed auxiliary information to achieve watermark extraction at the decoder and lossless recovery of the original video.Experimental results show that the algorithm in this paper has good invisibility.The peak signal-to-noise ratio and average structural similarity of the experimental video are 44.7537 dB and 0.9902 respectively.The bit rate expansion is all at 16.74%and below.At the same time,it is resistant to distortion attacks of different strengths.It has strong robustness.The normalized cross-correlation coefficients of experimental videos are all above 0.970,and the bit error rates are below 0.068.

关 键 词:鲁棒可逆水印 双域标记 H.264编码标准 量化DCT系数 运动矢量 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象