检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈健松 蔡艺军 CHEN Jiansong;CAI Yijun(School of Opto-electronic and Communication Engineering,Xiamen University of Technology,Xiamen 361024,China)
机构地区:[1]厦门理工学院光电与通信工程学院,福建厦门361024
出 处:《浙江大学学报(工学版)》2024年第1期71-77,共7页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金青年资助项目(62005232);福建省自然科学基金面上项目(2020J01294)。
摘 要:针对边缘端进行垃圾检测分类实时性差的问题,提出轻量化的Yolov5垃圾检测解决方案.引入Stem模块,增强模型对输入图像的特征提取能力.将backbone的C3模块进行改进,提高特征提取能力.使用深度可分离卷积替换网络中的3×3降采样卷积,实现模型轻量化.使用K-means++算法重新计算物体的锚框值,使模型在训练过程中能够更好地预测目标框的大小.通过实验研究对比可知,改进模型相比于Yolov5s模型,mAP_0.5提升了0.8%,mAP_0.5:0.95提升了3%,模型参数量减少到原来的77.9%,推理速度提升了21.9%,极大地提高了模型的检测性能.A lightweight Yolov5 garbage detection solution was proposed aiming at the issue of poor real-time performance in garbage detection classification on edge devices.The Stem module was introduced to enhance the model’s ability to extract features from input images.The C3 module of the backbone was improved to increase feature extraction capabilities.Depthwise separable convolution was used to replace the 3×3 downsampling convolutions in the network,achieving model lightweighting.The K-means++algorithm was employed to recompute anchor box values for objects,enabling the model to better predict target box sizes during training.Experimental research and comparisons show that the improved model achieves a 0.8%increase in mAP_0.5 and a 3%increase in mAP_0.5:0.95,while reducing model parameters by 77.9%and improving inference speed by 21.9%compared with the Yolov5s model,significantly enhancing the detection performance of the model.
关 键 词:垃圾分类 Yolov5 深度可分离卷积 K-means++算法 Stem模块
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200