面向垃圾分类场景的轻量化目标检测方案  被引量:3

Lightweight object detection scheme for garbage classification scenario

在线阅读下载全文

作  者:陈健松 蔡艺军 CHEN Jiansong;CAI Yijun(School of Opto-electronic and Communication Engineering,Xiamen University of Technology,Xiamen 361024,China)

机构地区:[1]厦门理工学院光电与通信工程学院,福建厦门361024

出  处:《浙江大学学报(工学版)》2024年第1期71-77,共7页Journal of Zhejiang University:Engineering Science

基  金:国家自然科学基金青年资助项目(62005232);福建省自然科学基金面上项目(2020J01294)。

摘  要:针对边缘端进行垃圾检测分类实时性差的问题,提出轻量化的Yolov5垃圾检测解决方案.引入Stem模块,增强模型对输入图像的特征提取能力.将backbone的C3模块进行改进,提高特征提取能力.使用深度可分离卷积替换网络中的3×3降采样卷积,实现模型轻量化.使用K-means++算法重新计算物体的锚框值,使模型在训练过程中能够更好地预测目标框的大小.通过实验研究对比可知,改进模型相比于Yolov5s模型,mAP_0.5提升了0.8%,mAP_0.5:0.95提升了3%,模型参数量减少到原来的77.9%,推理速度提升了21.9%,极大地提高了模型的检测性能.A lightweight Yolov5 garbage detection solution was proposed aiming at the issue of poor real-time performance in garbage detection classification on edge devices.The Stem module was introduced to enhance the model’s ability to extract features from input images.The C3 module of the backbone was improved to increase feature extraction capabilities.Depthwise separable convolution was used to replace the 3×3 downsampling convolutions in the network,achieving model lightweighting.The K-means++algorithm was employed to recompute anchor box values for objects,enabling the model to better predict target box sizes during training.Experimental research and comparisons show that the improved model achieves a 0.8%increase in mAP_0.5 and a 3%increase in mAP_0.5:0.95,while reducing model parameters by 77.9%and improving inference speed by 21.9%compared with the Yolov5s model,significantly enhancing the detection performance of the model.

关 键 词:垃圾分类 Yolov5 深度可分离卷积 K-means++算法 Stem模块 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象