热液成矿系统构造控矿理论  被引量:9

Developing structural control models for hydrothermal metallogenic systems:Theoretical and methodological principles and applications

在线阅读下载全文

作  者:杨立强[1,2,3,4] 杨伟 张良 高雪[1] 申世龙[1] 王偲瑞 徐瀚涛 贾晓晨 邓军 YANG Liqiang;YANG Wei;ZHANG Liang;GAO Xue;SHEN Shilong;WANG Sirui;XU Hantao;JIA Xiaochen;DENG Jun(State Key Laboratory of Geological Processes and Mineral Resources/Frontiers Science Center for Deep-time Digital Earth,China University of Geosciences(Beijing),Beijing 100083,China;Ministry of Natural Resources Key Laboratory of Gold Mineralization Processes and Resources Utilization,Shandong Institute of Geological Sciences,Jinan 250013,China;Institute of Geological Research,Shandong Gold Group Co.,LTD,Jinan 250101,China;Ministry of Natural Resources Technology Innovation Center for Deep Gold Resources Exploration and Mining,No6 Geological Team of Shandong Provincial Bureau of Geology and Mineral Resources,Weihai 264209,China;College of Resources and Environment,Xichang University,Xichang 615000,China)

机构地区:[1]中国地质大学(北京)地质过程与矿产资源国家重点实验室/深时数字地球前沿科学中心,北京100083 [2]山东省地质科学研究院自然资源部金矿成矿过程与资源利用重点实验室,山东济南250013 [3]山东黄金地质研究院,山东济南250101 [4]山东省地质矿产勘查开发局第六地质大队自然资源部深部金矿资源勘查与开采技术创新中心,山东威海264209 [5]西昌学院资源与环境学院,四川西昌615000

出  处:《地学前缘》2024年第1期239-266,共28页Earth Science Frontiers

基  金:国家自然科学基金项目(42130801,42272071);科学技术部国家重点研发计划项目(2019YFA0708603);高等学校学科创新引智计划2.0(BP0719021);中国地质大学深时数字地球前沿科学中心“深时数字地球”中央高校科技领军人才团队项目(2652023001);地质过程与矿产资源国家重点实验室专项(MSFGPMR201804)。

摘  要:构造对成矿的控制是热液成矿系统的典型特征之一,系统剖析多重尺度控矿构造的几何学、运动学、动力学、流变学和热力学对认识矿床成因和预测找矿至关重要;而如何实现控矿构造格架、渗透性结构、成矿流体通道和矿化变形网络由静态到多尺度时-空四维动态的转变,查明流体通道和矿床增量生长过程与控制因素,揭示热液成矿系统的构造-流体耦合成矿机制和定位规律是亟待解决的关键科学难题。为此,我们在对已有相关成果系统梳理的基础上,提出了科学构建热液成矿系统构造控矿理论的基本要点与对应方法及应用范畴:(1)流体而非构造是构造控矿理论的中心,热液系统的流体流动与成矿作用受控于断裂带格架及其渗透性结构,其中渗透率是将流体流动与流体压力变化联系起来理解控矿构造的核心;(2)不同控矿构造组合的关键控制是构造差应力和流体压力的大小,而矿化类型的变化可能是由于构造应力场引起的容矿构造方位的不同和赋矿围岩之间的强度差异所致;(3)流体通道的生长始于超压流体储库上游围岩中孤立的微裂隙沿流体压力梯度最大的方向、随裂隙发育且相互连结而形成新的长裂隙,并最终连通形成断裂网络内的流体通道,矿床的增量生长发生在高流体通量的短爆发期,断层反复滑动驱动其内流体压力、流速和应力快速变化,当由此诱发的流体通道生长破坏了流体系统的动态平衡时,随之而来的流体快速降压就成为金属沉淀成矿的关键驱动因素;(4)以热液裂隙-脉系统野外地质观测和构造-蚀变-矿化网络三维填图为基础,通过宏观与微观各级控矿构造相结合、地质历史与构造应力分析相结合、局部与区域点-线-面相结合、浅部与深部相结合、时间与空间相结合、定性和定量相结合,对各种控矿因素开展多学科、多尺度、多层次、全方位�A defining feature of a hydrothermal metallogenic system(HMS)is strong structural control on ore mineralization.A systematic analysis of the geometry,kinematics,thermodynamics,and rheology of multiscale ore control structures is crucial for understanding the genesis of HMSs and for ore prospecting.The main challenges include:transitioning from static to multiscale spatiotemporal analysis of the 4D dynamical system involving ore-control structural frameworks,permeability structures,ore-forming fluid pathways,and mineralization deformation networks;identifying key influencing factors of fluid pathways that control ore deposition;and unraveling the mechanism of structure-fluid coupling control of ore formation and localization.This study presents the theoretical and methodological principles and application for developing structural control models for HMSs in the following aspects.(1)The theoretical core.It states that fluid,not structure,is at the core of a structural control model.Fluid flow and ore formation within a hydrothermal system are influenced by the fault zone architecture and permeability structure,where permeability,in linking fluid flow and fluid pressure variation,is key to understanding ore control structures.(2)Stress and pressure dynamics.It considers that differential stress and fluid pressure difference result in diverse combinations of ore control structures,while differences in regional stress field and host rock strength result in variations in mineralization type.(3)Growth of fluid pathways.It considers that fluid pathways initiate from isolated microfractures within the upstream host rocks of overpressured fluid reservoirs which evolve along the direction of the steepest pressure gradient to form new extended fractures through growth and interconnection.These extended fractures eventually interconnect to form fluid pathways.As ore deposition takes place during brief periods of high fluid flux when repeated fault sliding induces rapid changes in fluid pressure,flow velocity,and stress,rapid

关 键 词:热液裂隙-脉系统 构造-蚀变-矿化网络 渗透性结构与成矿定位 流体通道和矿床增量生长 构造-流体耦合成矿模式 

分 类 号:P611[天文地球—矿床学] P613[天文地球—地质学] P614

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象