检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱江 方冰 高勇 黄湘远 ZHU Jiang;FANG Bing;GAO Yong;HUANG Xiangyuan(Army Command College of PLA,Nanjing 210045,China;Unit 75841 of PLA,Changsha 410000,China)
机构地区:[1]陆军指挥学院,江苏南京210045 [2]75841部队,湖南长沙410000
出 处:《陆军工程大学学报》2024年第1期43-49,共7页Journal of Army Engineering University of PLA
基 金:国家自然科学基金(71401177)。
摘 要:为进一步完善和发展传统偏好决策理论,在直觉模糊偏好关系加性一致性概念的启发下,构建了两个可与勾股模糊偏好关系(Pythagorean fuzzy preference relations, PFPRs)相互转化的传统模糊偏好关系,并在此基础上定义了PFPRs的加性一致性测度,设计了加性一致性驱动的勾股模糊偏好决策方法,通过具体实例对所提勾股模糊偏好决策方法的有效性和合理性进行了数值验证。理论分析和数值验证结果表明,所提加性一致性驱动的勾股模糊偏好决策方法具有结构清晰、计算量可控、逻辑性和可操作性强、决策结果合理有效等优点。To further improve and develop traditional preference decision-making theory,inspired by the concept of additive consistency of intuitionistic fuzzy preference relations,two traditional fuzzy preference relations that can be mutually transformed into Pythagorean fuzzy preference relations(PFPRs)are constructed.On this basis,an additive consistency measure for PFPRs is defined,and a Pythagorean fuzzy preference decision-making method driven by additive consistency is designed.The effectiveness and rationality of the proposed Pythagorean fuzzy preference decision-making method are numerically verified through specific cases.Theoretical analysis and numerical verification results show that the proposed decision-making method of PFPRs driven by additive consistency has the advantages of clear structure,controllable amount of calculation,strong logic and operability,and can obtain a reasonable and effective decision-making result.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.209.87