二维铁电半导体层级处理模块设计及低功耗高性能人工视觉系统应用  被引量:1

Hierarchical processing enabled by 2D ferroelectric semiconductor transistor for low-power and high-efficiency AI vision system

在线阅读下载全文

作  者:吴广成 向立 王文强 姚程栋 颜泽毅 张成 吴家鑫 刘勇 郑弼元 刘华伟 胡城伟 孙兴霞 朱晨光 王一喆 熊雄 吴燕庆 高亮 李东 潘安练 李晟曼 Guangcheng Wu;Li Xiang;Wenqiang Wang;Chengdong Yao;Zeyi Yan;Cheng Zhang;Jiaxin Wu;Yong Liu;Biyuan Zheng;Huawei Liu;Chengwei Hu;Xingxia Sun;Chenguang Zhu;Yizhe Wang;Xiong Xiong;Yanqing Wu;Liang Gao;Dong Li;Anlian Pan;Shengman Li(Key Laboratory for Micro-Nano Physics and Technology of Hunan Province,State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Materials Science and Engineering,Hunan University,Changsha 410082,China;Hunan Institute of Optoelectronic Integration,Hunan University,Changsha 410082,China;Hunan Institute of Advanced Sensing and Information Technology,Xiangtan University,Xiangtan 411105,China;School of Integrated Circuits,Peking University,Beijing 100871,China;Wuhan National Laboratory for Optoelectronics(WNLO),Huazhong University of Science and Technology(HUST),Wuhan 430074,China)

机构地区:[1]Key Laboratory for Micro-Nano Physics and Technology of Hunan Province,State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Materials Science and Engineering,Hunan University,Changsha 410082,China [2]Hunan Institute of Optoelectronic Integration,Hunan University,Changsha 410082,China [3]Hunan Institute of Advanced Sensing and Information Technology,Xiangtan University,Xiangtan 411105,China [4]School of Integrated Circuits,Peking University,Beijing 100871,China [5]Wuhan National Laboratory for Optoelectronics(WNLO),Huazhong University of Science and Technology(HUST),Wuhan 430074,China

出  处:《Science Bulletin》2024年第4期473-482,共10页科学通报(英文版)

基  金:supported by the National Natural Science Foundation of China(62104066,52221001,62090035,U19A2090,U22A20138,52372146,and 62101181);the National Key R&D Program of China(2022YFA1402501,2022YFA1204300);the Natural Science Foundation of Hunan Province(2021JJ20016);the Science and Technology Innovation Program of Hunan Province(2021RC3061);the Key Program of Science and Technology Department of Hunan Province(2019XK2001,2020XK2001);the Open Project Program of Wuhan National Laboratory for Optoelectronics(2020WNLOKF016);the Open Project Program of Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(22ZS01);the Project funded by China Postdoctoral Science Foundation(2023TQ0110);the Innovation Project of Optics Valley Laboratory(OVL2023ZD002).

摘  要:The growth of data and Internet of Things challenges traditional hardware,which encounters efficiency and power issues owing to separate functional units for sensors,memory,and computation.In this study,we designed an a-phase indium selenide(a-In_(2)Se_(3))transistor,which is a two-dimensional ferroelectric semiconductor as the channel material,to create artificial optic-neural and electro-neural synapses,enabling cutting-edge processing-in-sensor(PIS)and computing-in-memory(CIM)functionalities.As an optic-neural synapse for low-level sensory processing,the a-In_(2)Se_(3)transistor exhibits a high photoresponsivity(2855 A/W)and detectivity(2.91×10^(14)Jones),facilitating efficient feature extraction.For high-level processing tasks as an electro-neural synapse,it offers a fast program/erase speed of 40 ns/50μs and ultralow energy consumption of 0.37 aJ/spike.An AI vision system using a-In_(2)Se_(3)transistors has been demonstrated.It achieved an impressive recognition accuracy of 92.63%within 12 epochs owing to the synergistic combination of the PIS and CIM functionalities.This study demonstrates the potential of the a-In_(2)Se_(3)transistor in future vision hardware,enhancing processing,power efficiency,and AI applications.

关 键 词:Two-dimensional ferroelectric SEMICONDUCTOR Processing-in-sensor Computing-in-memory Synaptic device Artificial-intelligence vision system 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TN386[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象