机构地区:[1]Faculty of Agriculture,Tanta University,Tanta,31527,Egypt [2]King Salman International University,South Sinai,46618,Egypt [3]Faculty of Agriculture,Alexandria University,Alexandria,21526,Egypt [4]Animal Health Research Institute(AHRI-DOKI),Agriculture Research Center,Giza,12619,Egypt [5]Fish Rearing Lab.,Aquaculture Division,National Institute of Oceanography and Fisheries,Alexandria,21556,Egypt [6]Horticulture Department,Faculty of Agriculture,Damanhour University,Damanhur,22511,Egypt [7]Department of Poultry Production,Faculty of Agriculture,Damietta University,Damietta,34517,Egypt [8]Laboratory of Aquatic Animal Nutrition,Faculty of Fisheries,Kagoshima University,Kagoshima,890-0065,Japan [9]Department of Aquatic and Fisheries Science,Mzuzu University,Mzuzu,Private Bag 201,Malawi [10]Faculty of Aquaculture and Marine Fisheries,Arish University,Arish,45516,Egypt
出 处:《Aquaculture and Fisheries》2024年第1期57-65,共9页渔业学报(英文)
摘 要:A 56-day feeding period was performed to investigate the possible impacts of dietary nano curcumin(0,50,100,150,and 200 ppm)on the growth,nutrient utilization,non-specific immune parameters,antioxidants in Nile tilapia under chronic low temperature(21.02±0.11◦C).Fishes(n=225;Initial weight=4.39±0.08 g/fish)were randomly stocked at 15 fish/tank for five experimental groups in triplicates.Under low-temperature circumstances,dietary curcumin in nano form showed no notable alteration in growth variable,nutrient efficiency,digestive enzymes efficiency,biometric indices,survival rates,and hematological components.Meanwhile,the serum of fishes with nano curcumin diets under low-temperature stress displayed higher total protein as well as lower glucose,cortisol,and total cholesterol compared with the control group.Moreover,fish fed nano curcumin diets displayed higher lysozyme and bactericidal activities compared to the control group and the best performance was found at dietary nano curcumin level of≥100 ppm.Also,groups fed the basal diet demonstrated the poorest antioxidant capacity,and the best superoxide dismutase(SOD)and glutathione peroxidase(GPx)existed in fish with nano curcumin diets while the best catalase(CAT)efficiency occurred at higher nano curcumin levels≥100 ppm.In addition,higher counts of intestinal microbiota in terms of total bacterial count(TBC),total yeast and molds count(TYMC),and coliform were noticed in fish consumed the basal diet compared to groups fed on nano curcumin diets.In conclusion,incorporating nano curcumin at a level of≥100 mg/kg diet(particularly at 150 mg/kg)improved a non-specific immune response,antioxidant,and healthier gastrointestinal microbiota in Nile tilapia under chronic low-temperature stress.
关 键 词:Nano curcumin Gastrointestinal microbiota ANTIOXIDANTS Non-specific immune responses Temperature stress
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...