3D pulmonary vessel segmentation based on improved residual attention u-net  

在线阅读下载全文

作  者:Jiachen Han Naixin He Qiang Zheng Lin Li Chaoqing Ma 

机构地区:[1]School of Computer and Control Engineering,Yantai University,Yantai,264005,Shandong,China [2]Yantaishan Hospital Affiliated,Binzhou Medical University,Yantai,264003,Shandong,China

出  处:《Medicine in Novel Technology and Devices》2023年第4期64-75,共12页医学中新技术与新装备(英文)

摘  要:Automatic segmentation of pulmonary vessels is a fundamental and essential task for the diagnosis of various pulmonary vessels diseases.The accuracy of segmentation is suffering from the complex vascular structure.In this paper,an Improved Residual Attention U-Net(IRAU-Net)aiming to segment pulmonary vessel in 3D is proposed.To extract more vessel structure information,the Squeeze and Excitation(SE)block is embedded in the down sampling stage.And in the up sampling stage,the global attention module(GAM)is used to capture target features in both high and low levels.These two stages are connected by Atrous Spatial Pyramid Pooling(ASPP)which can sample in various receptive fields with a low computational cost.By the evaluation experiment,the better performance of IRAU-Net on the segmentation of terminal vessel is indicated.It is expected to provide robust support for clinical diagnosis and treatment.

关 键 词:Pulmonary vessel segmentation RAU-Net Squeeze and excitation Atrous spatial pyramid pooling Deep learning 

分 类 号:R563[医药卫生—呼吸系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象