检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kaiwen Yuan Xinyu Zhao Wenru Sun Limei Yang Yangyong Zhang Yong Wang Jialei Ji Fengqing Han Zhiyuan Fang Honghao Lv
出 处:《Horticulture Research》2023年第8期194-202,共9页园艺研究(英文)
基 金:This work was funded by the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAASASTIPIVFCAAS);the China Agriculture Research System of MOF and MARA(CARS-23).
摘 要:Brassica oleracea comprises several important vegetable and ornamental crops,including curly kale,ornamental kale,cabbage,broccoli,and others.The accumulation of anthocyanins,important secondary metabolites valuable to human health,in these plants varies widely and is responsible for their pink to dark purple colors.Some curly kale varieties lack anthocyanins,making these plants completely green.The genetic basis of this trait is still unknown.We crossed the curly kale inbred line BK2019(without anthocyanins)with the cabbage inbred line YL1(with anthocyanins)and the Chinese kale inbred line TO1000(with anthocyanins)to generate segregating populations.The no-anthocyanin trait was genetically controlled by a recessive gene,bona1.We generated a linkage map and mapped bona1 to a 256-kb interval on C09.We identified one candidate gene,Bo9g058630,in the target genomic region;this gene is homologous to AT5G42800,which encodes a dihydroflavonol-4-reductase-like(DFR-like)protein in Arabidopsis.In BK2019,a 1-bp insertion was observed in the second exon of Bo9g058630 and directly produced a stop codon.To verify the candidate gene function,CRISPR/Cas9 gene editing technology was applied to knock out Bo9g058630.We generated three bona1 mutants,two of which were completely green with no anthocyanins,confirming that Bo9g058630 corresponds to BoNA1.Different insertion/deletion mutations in BoNA1 exons were found in all six of the other no-anthocyanin kale varieties examined,supporting that independent disruption of BoNA1 resulted in no-anthocyanin varieties of B.oleracea.This study improves the understanding of the regulation mechanism of anthocyanin accumulation in B.oleracea subspecies.
分 类 号:Q945.8[农业科学—植物病理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7