基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测  被引量:11

Prediction of tunneling-induced ground surface settlement within composite strata using multi-physics-informed neural network

在线阅读下载全文

作  者:潘秋景[1] 吴洪涛 张子龙 宋克志[2] PAN Qiu-jing;WU Hong-tao;ZHANG Zi-long;SONG Ke-zhi(School of Civil Engineering,Central South University,Changsha,Hunan 410075,China;School of Civil Engineering,Ludong University,Yantai,Shandong 264025,China)

机构地区:[1]中南大学土木工程学院,湖南长沙410075 [2]鲁东大学土木工程学院,山东烟台264025

出  处:《岩土力学》2024年第2期539-551,共13页Rock and Soil Mechanics

基  金:国家自然科学基金(No.51978322,No.52108388,No.52378424);湖南省科技创新计划(No.2021RC3015);湖南省自然科学基金青年科学基金(No.2022JJ40611)。

摘  要:复合地层中盾构掘进诱发地表沉降的准确预测是隧道工程安全建设与施工决策的关键问题。基于隧道施工诱发地层变形机制构建隧道收敛变形与掘进位置的联系,并将其耦合至深度神经网络(deep neural network,简称DNN)框架,建立了预测盾构掘进诱发地层变形的物理信息神经网络(physics-informed neural network,简称PINN)模型。针对隧道上覆多个地层的地质特征,提出了多域物理信息神经网络(multi-physics-informed neural network,简称MPINN)模型,实现了在统一的框架内对不同地层的物理信息分区域表达。结果表明:MPINN模型高度还原了有限差分法的计算结果,可以准确预测复合地层中隧道开挖诱发的地表沉降;由于融入了物理机制,MPINN模型对隧道施工诱发地表沉降的问题具有普适性,可应用于不同地质和几何条件下隧道诱发地表沉降的预测;基于工程实测数据,提出的MPINN模型准确预测了监测断面的地表沉降曲线,可为复合地层下盾构掘进过程中地表沉降的预测预警提供参考。Accurate prediction of tunneling-induced ground surface settlement is crucial for ensuring safe construction and decision-making in tunneling projects.In this study,a physics-informed neural network(PINN) model is established for predicting shield tunneling-induced stratum deformation.This model is constructed by incorporating the relationship between tunnel convergence deformation and tunneling position into a deep neural network(DNN) framework.Considering the geological characteristics of multiple strata,a multi-physics-informed neural network(MPINN) model is proposed to represent the physical information of different strata in a unified framework.The results show that the MPINN model can highly reproduce the results by the finite difference method,and can accurately predict the tunneling-induced ground surface settlements considering the complex geological information of the composite strata.Due to the integrated physical mechanism,the MPINN model is applicable to the problem of tunnel-induced ground surface settlement,and it can be employed to predict the tunneling-induced ground surface settlement under different geological and geometric conditions.Based on the measured data,the proposed MPINN model accurately predicts the ground surface settlement curve of the monitored cross-section,thus it can provide a reference for the prediction and early warning of ground surface settlement during tunneling process.

关 键 词:物理信息神经网络(PINN) 盾构隧道 地表沉降 机器学习 数据物理驱动 

分 类 号:U25[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象