检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄永[1] 鲍跃全[1] 李惠[1] HUANG Yong;BAO Yuequan;LI Hui(School of Civil Engineering,Harbin Institute of Technology,Harbin 150090,China)
机构地区:[1]哈尔滨工业大学土木工程学院,哈尔滨150090
出 处:《力学进展》2023年第4期774-792,共19页Advances in Mechanics
基 金:国家自然科学基金(51921006,51978216,U2139209,52192664)资助项目。
摘 要:结构健康监测通过在大型工程结构上安装多类型传感器,感知、采集、传输和处理多元数据,已经成为保障重大工程结构安全的重要手段.随着结构健康监测系统的广泛应用,产生了海量的监测数据,如何通过监测数据识别和评估结构状态与安全是核心科学问题之一.由于土木工程结构的复杂性,状态识别与评估的核心难点是高维问题优化与求解,机器学习在高维问题求解方面具有很强的能力,为该问题的解决提供了新的思路.本文重点阐述机器学习在结构模态识别、损伤识别及可靠性评估等方面的研究进展,并讨论未来在该研究方向的发展趋势.Structural health monitoring(SHM)has become an important technique to ensure the safety of major engineering structures by sensing,collecting,transmitting and processing multivariate data,through the installation of multiple types of sensors on large engineering structures.With the wide application of SHM system,a huge amount of monitoring data is generated,and how to identify and evaluate the structural condition and safety through monitoring data is one of the core scientific problems.Due to the complexity of civil engineering structures,the core difficulty of state identification and assessment is the optimization and solution of high-dimensional problems.Machine learning has a strong capability in solving high-dimensional problems,providing new ideas for the solution of this problem.This paper focuses on the research progress of machine learning in structural modal identification,damage identification and reliability assessment,and discusses the future development trend in these research directions.
关 键 词:结构损伤识别 模态识别 安全评定 机器学习 结构健康监测
分 类 号:O327[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222