基于智能优化算法的牵引变电所接地网腐蚀诊断  

Intelligent Optimization Algorithm-based Corrosion Diagnosis of Traction Substation Grounding Grids

在线阅读下载全文

作  者:艾效天 冯思苗 王钰博 何思露 裴丽超 AI Xiaotian;FENG Simiao;WANG Yubo;HE Silu;PEI Lichao(Southwest Jiaotong University,Chengdu 611756,China)

机构地区:[1]西南交通大学,四川成都611756

出  处:《电工技术》2024年第2期56-59,共4页Electric Engineering

摘  要:牵引变电所接地网为所内电气设备提供可靠接地。气候、温度等外界因素可能会导致接地导体出现严重腐蚀,对人身安全与设备运行造成威胁。针对上述问题,以电网络理论为基础,推导了接地网的腐蚀诊断方程组,采用MATLAB/Simulink软件建立仿真模型,利用仿真模型与实际模型互相验证。然后,采用L-M算法和粒子群算法结合的智能优化算法进行多次迭代计算,得到腐蚀支路位置和腐蚀倍数。最后,针对61支路接地网案例,分别进行单支路和三支路腐蚀诊断,设置腐蚀支路,电阻增大为标称值的2倍,根据上述算法得到腐蚀诊断结果,诊断结果与模型设置相符,验证了所推荐算法的有效性,为牵引供电系统的安全运维提供了一定参考。Grounding grids of traction substations provide reliable grounding for internal electrical equipment.External factors such as climate and temperature may cause severe corrosion of grounding conductors,posing a threat to personal safety and equipment operation.In view of this,based on the theory of electrical networks,a corrosion diagnosis equation set for grounding grid was derived.A simulation model was established using MATLAB/Simulink software,and verified with the actual model.Then an intelligent optimization algorithm combining L-M algorithm and particle swarm optimization algorithm was used for multiple iterations to obtain corrosion branch position and corrosion factor.Finally,based on diagnosis results of 61 cases of branch grounding grids,single-branch and triple-branch corrosion diagnoses were conducted by setting the corrosion branch,and increasing resistance to twice the nominal value.The corrosion diagnosis results obtained based on the aforementioned algorithm were consistent with the model settings,verifying the effectiveness of the adopted algorithm and providing a certain reference for safe operation and maintenance of traction power supply system.

关 键 词:牵引变电所接地网 智能优化算法 腐蚀诊断 

分 类 号:TM732[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象