检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaoling Tao Yuelin Yu Lianyou Fu Jianxiang Liu Yunhao Zhang
机构地区:[1]Guangxi Key Laboratory of Cryptography and Information Security,Guilin University of Electronic Technology,Guilin 541004,China [2]Guangxi Cooperative Innovation Center of Cloud Computing and Big Data,Guilin University of Electronic Technology,Guilin 541004,China
出 处:《High-Confidence Computing》2023年第4期87-95,共9页高置信计算(英文)
基 金:supported by the National Natural Science Foundation of China(61962015);the Guangxi Key Laboratory of Cryptography and Information Security Research Project,China(GCIS202127);the Central Guidance on Local Science and Technology Development Fund of Guangxi Province,China(ZY23055008);the Scientific Research and Technological Development Planning Project of Guilin,China(20220124-12);the Innovation Project of Guangxi Graduate Education,China(2023YCXS043).
摘 要:With the rapid development of information technology,information system security and insider threat detection have become important topics for organizational management.In the current network environment,user behavioral bio-data presents the characteristics of nonlinearity and temporal sequence.Most of the existing research on authentication based on user behavioral biometrics adopts the method of manual feature extraction.They do not adequately capture the nonlinear and time-sequential dependencies of behavioral bio-data,and also do not adequately reflect the personalized usage characteristics of users,leading to bottlenecks in the performance of the authentication algorithm.In order to solve the above problems,this paper proposes a Temporal Convolutional Network method based on an Efficient Channel Attention mechanism(ECA-TCN)to extract user mouse dynamics features and constructs an one-class Support Vector Machine(OCSVM)for each user for authentication.Experimental results show that compared with four existing deep learning algorithms,the method retains more adequate key information and improves the classification performance of the neural network.In the final authentication,the Area Under the Curve(AUC)can reach 96%.
关 键 词:Insider users Mouse dynamics Feature extraction Temporal convolutional network Efficient channel attention mechanism AUTHENTICATION
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.206.240