弱信号环境下边境安全情报感知模型研究  被引量:3

Research on Information Perception Model of Border Security in Weak Signal Environment

在线阅读下载全文

作  者:罗伟哲 唐超 Luo Weizhe

机构地区:[1]中国人民警察大学研究生院,河北廊坊065000 [2]中国人民警察大学智慧警务学院,河北廊坊065000

出  处:《情报理论与实践》2024年第3期170-176,共7页Information Studies:Theory & Application

基  金:国家社会科学基金项目“我国陆地边境安全风险的情报感知响应机制研究”的成果,项目编号:22BTQ103。

摘  要:[目的/意义]在边境安全情报活动所面临弱信号环境中,构建边境安全情报感知模型,解决情报感知工具不足问题。[方法/过程]通过实际调研,分析边境安全情报体系在面对弱信号环境时所存在的感知范围狭窄、感知内容单一、深刻程度和智能化程度不足4方面困境。以系统论和情报感知理论为指导,构建面向弱信号的边境安全情报感知模型。[结果/结论]边境安全弱信号感知模型构建遵守从常态扫描与重点扫描相结合、从“还原事实”到“理解弱信号”、人机交互的原则,主要包括人才、资源、技术三个构成要素,全谱系扫描、信息采集与融合、情景分析、意义构建、刻画表达、持续监测6个步骤。[Purpose/significance] The intensity of system confrontation in border security risk has increased.Border security information activities are facing weak signal environment.So it is necessary to construct a border security information awareness model suitable for weak signal environment to solve the problem of intelligence perception tools lacking.[Method/process] Through the actual investigation,the paper analyzes the four difficulties of the border security information system in the face of weak signal environment:narrow perception range,single perception content,insufficient the profound degree and information degree.Based on system theory and information perception theory,a weak signal oriented border security information perception model is constructed.[Result/conclusion] The model followed principles of combination of normal scanning and key scanning,from “restoring the truth” to “understanding weak signals”,and human-computer interaction.It was mainly divided into three parts:talent,resources and technology,and was divided into five steps:full-spectrum scanning,signal acquisition and fusion,scenario analysis,meaning construction and characterization and expression.

关 键 词:弱信号 边境安全情报 情报感知 模型构建 

分 类 号:D631[政治法律—政治学] G350[政治法律—中外政治制度]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象