检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WANG Yi-guang GUO Zheng-chu
机构地区:[1]Polytechnic Institute of Zhejiang University,Zhejiang University,Hangzhou 310015,China [2]School of Mathematical Sciences,Zhejiang University,Hangzhou 310058,China
出 处:《Applied Mathematics(A Journal of Chinese Universities)》2024年第1期1-23,共23页高校应用数学学报(英文版)(B辑)
基 金:supported by Zhejiang Provincial Natural Science Foundation of China(LR20A010001);National Natural Science Foundation of China(12271473 and U21A20426)。
摘 要:In the realm of large-scale machine learning,it is crucial to explore methods for reducing computational complexity and memory demands while maintaining generalization performance.Additionally,since the collected data may contain some sensitive information,it is also of great significance to study privacy-preserving machine learning algorithms.This paper focuses on the performance of the differentially private stochastic gradient descent(SGD)algorithm based on random features.To begin,the algorithm maps the original data into a lowdimensional space,thereby avoiding the traditional kernel method for large-scale data storage requirement.Subsequently,the algorithm iteratively optimizes parameters using the stochastic gradient descent approach.Lastly,the output perturbation mechanism is employed to introduce random noise,ensuring algorithmic privacy.We prove that the proposed algorithm satisfies the differential privacy while achieving fast convergence rates under some mild conditions.
关 键 词:learning theory differential privacy stochastic gradient descent random features reproducing kernel Hilbert spaces
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222