Identifying the best common factor model via exploratory eactor analysis  被引量:1

在线阅读下载全文

作  者:HE Bao-hua TANG Rui TAGN Qi-yi 

机构地区:[1]School of Big Data,Fuzhou University of International Studies and Trade,Fuzhou 350202,China [2]School of Mathematics,Sun Yat-Sen University,Guangzhou 510275,China [3]Department of Computer Science,University of Bath,UK [4]Institute of Insect Science,Zhejiang University,Hangzhou 310058,China.

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2024年第1期24-33,共10页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Basic Research Program of China(2010CB126200);the National Natural Science Foundation of China(30370914)。

摘  要:Currently,there is no solid criterion for judging the quality of the estimators in factor analysis.This paper presents a new evaluation method for exploratory factor analysis that pinpoints an appropriate number of factors along with the best method for factor extraction.The proposed technique consists of two steps:testing the normality of the residuals from the fitted model via the Shapiro-Wilk test and using an empirical quantified index to judge the quality of the factor model.Examples are presented to demonstrate how the method is implemented and to verify its effectiveness.

关 键 词:factor analysis Shapiro-Wilk NORMALITY RESIDUALS 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象