Deflagration and detonation induced by shock wave focusing at different Mach numbers  

在线阅读下载全文

作  者:Zezhong YANG Jun CHENG Bo ZHANG 

机构地区:[1]School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China

出  处:《Chinese Journal of Aeronautics》2024年第2期249-258,共10页中国航空学报(英文版)

基  金:the financial support from the National Natural Science Foundation of China(No.12272234);the Innovation Program of Shanghai Municipal Education Commission,China(No.2023KEJI05-75);the Shanghai Science and Technology Planning Project,China(No.22190711500)。

摘  要:Shock wave focusing is an effective way to create a hot spot or a high-pressure and hightemperature region at a certain place,showing its unique usage in detonation initiation,which is beneficial for the development of detonation-based engines.The flame propagation behavior after the autoignition induced by shock wave focusing is crucial to the formation and self-sustaining of the detonation wave.In this study,wedge reflectors with two different angles(60°and 90°)and a planar reflector are employed,and the Mach number of incident shock waves ranging from 2.0 to 2.8 is utilized to trigger different flame propagation modes.Dynamic pressure transducers and the high-speed schlieren imaging system are both employed to investigate the shock-shock collision and ignition procedure.The results reveal a total of four flame propagation modes:deflagration,DDT(Deflagration-to-Detonation Transition),unsteady detonation,and direct detonation.The detonation wave formed in the DDT and unsteady detonation mode is only approximately 75%-85%of the Chapman-Jouguet(C-J)speed;meanwhile,the directly induced detonation wave speed is close to the C-J speed.Transverse waves,which are strong evidence for the existence of detonation waves,are discovered in experiments.The usage of wedge reflectors significantly reduces the initial pressure difference ratio needed for direct detonation ignition.We also provide a practical method for differentiating between detonation and deflagration modes,which involves contrasting the speed of the reflected shock wave with the speed of the theoretically nonreactive reflected shock wave.These findings should serve as a reference for the detonation initiation technique in advanced detonation propulsion engines.

关 键 词:DEFLAGRATION DETONATION HYDROGEN IGNITION Shock wave focusing 

分 类 号:V231.22[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象