基于遗传神经网络的电力市场需求响应效率提高方法  

Optimization of Demand Response Efficiency in Power Market Based on Genetic Neural Network

在线阅读下载全文

作  者:孙立元 SUN Liyuan(Measurement Center,Yunan Power Grid Co.,Ltd.,Kunming Yunnan 650200,China)

机构地区:[1]云南电网有限责任公司计量中心,云南昆明650200

出  处:《信息与电脑》2023年第22期29-31,共3页Information & Computer

摘  要:为了提高电力市场需求响应效率,提高成本收益,增强电力负荷特性,本文将利用遗传神经网络建立需求响应模型,提前一天获取电力市场需求响应情况,对电费影响较大的负荷进行调整。根据电力市场需求响应情况,设计峰谷组合的电力套餐,满足不同用户在用电方面的不同需求,优化需求响应中的用电有限理性行为。通过约束基础负荷与可调负荷,提高电力市场需求响应效率。实验结果表明,应用该优化方法后,电网提高负荷率始终高于对照组,有效地缩小了电网峰谷差,提升了需求响应效率,效果显著。In order to optimize the efficiency of electricity market demand response,improve response potential,costbenefit,and electricity load characteristics,a genetic neural network-based optimization method for electricity market demand response efficiency was studied.Using genetic neural networks to establish a demand response model,obtain the demand response situation of the electricity market one day in advance,and make adjustments to loads with significant impact on electricity bills.Based on the demand response of the electricity market,design a peak valley combination of electricity packages to meet the different needs of different users in terms of electricity consumption,and optimize the rational behavior of electricity consumption in demand response.Refine and optimize the efficiency of electricity market demand response by constraining the basic load and adjustable load.The experimental results show that after the application of the proposed optimization method,the load increase rate of the power grid is consistently higher than that of the control group,effectively reducing the peak valley difference of the power grid,improving demand response efficiency,and achieving significant optimization results.

关 键 词:遗传神经网络 电力市场 需求响应 

分 类 号:TU85[建筑科学] TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象