检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张波 ZHANG Bo(Passenger Transport Department,China Railway Lanzhou Group Co.Ltd.,Lanzhou 730030,China)
机构地区:[1]中国铁路兰州局集团有限公司客运部,兰州730030
出 处:《铁路计算机应用》2024年第2期7-12,共6页Railway Computer Application
基 金:中国铁路兰州局集团有限公司科技研究项目(LZJKY2023094-1)。
摘 要:随着铁路运力的不断提升,旅客在铁路客运站内候车的频次和时间也在不断增加,为主动挖掘候车旅客的个性化需求,提出一种基于AL-Transformer(Attribute Localization-Transformer)模型的铁路客运站旅客属性识别方法。AL-Transformer模型基于Swin Transformer主干网络提取进站旅客的结构化信息,通过掩码对比学习(MCL,Mask Contrast Learning)框架抑制特征区域相关性,获取到更有辨识度的属性区域;通过属性空间记忆(ASM,Attribute Spatial Memory)模块选取更加可靠、稳定的属性相关区域。在中国铁路兰州局集团有限公司白银南站试用的效果表明,该方法可有效识别旅客属性,为客运站工作人员推送更有针对性的信息,提升客运站的旅客服务质量,保障旅客候车安全。With the continuous improvement of railway transportation capacity,the frequency and time of passengers waiting for trains in railway passenger stations are also increasing.To actively explore the personalized needs of waiting passengers,this paper proposed a passenger attribute recognition method for railway passenger station based on the AL-Transformer(Attribute Localization Transformer)model.The paper used AL-Transformer model based on the Swin Transformer backbone network to extract structured information of passengers entering the stations,suppressed feature region correlation through the Mask Contrast Learning(MCL)framework to obtain more recognizable attribute regions,and used Attribute Spatial Memory(ASM)module to selecte more reliable and stable attribute related regions.The trial results at Baiyin South Station of CHINA RAILWAY Lanzhou Group show that this method can effectively identify passenger attributes,push more targeted information for station staff,improve the quality of passenger service at the station,and ensure the safety of passenger waiting.
关 键 词:属性识别 AL-Transformer模型 掩码对比学习(MCL) 属性空间记忆(ASM) 旅客异常行为
分 类 号:U293.3[交通运输工程—交通运输规划与管理] TP39[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7