基于AL-Transformer的铁路客运站旅客属性识别方法  被引量:1

Passenger attribute recognition method for railway passenger stations based on AL-Transformer model

在线阅读下载全文

作  者:张波 ZHANG Bo(Passenger Transport Department,China Railway Lanzhou Group Co.Ltd.,Lanzhou 730030,China)

机构地区:[1]中国铁路兰州局集团有限公司客运部,兰州730030

出  处:《铁路计算机应用》2024年第2期7-12,共6页Railway Computer Application

基  金:中国铁路兰州局集团有限公司科技研究项目(LZJKY2023094-1)。

摘  要:随着铁路运力的不断提升,旅客在铁路客运站内候车的频次和时间也在不断增加,为主动挖掘候车旅客的个性化需求,提出一种基于AL-Transformer(Attribute Localization-Transformer)模型的铁路客运站旅客属性识别方法。AL-Transformer模型基于Swin Transformer主干网络提取进站旅客的结构化信息,通过掩码对比学习(MCL,Mask Contrast Learning)框架抑制特征区域相关性,获取到更有辨识度的属性区域;通过属性空间记忆(ASM,Attribute Spatial Memory)模块选取更加可靠、稳定的属性相关区域。在中国铁路兰州局集团有限公司白银南站试用的效果表明,该方法可有效识别旅客属性,为客运站工作人员推送更有针对性的信息,提升客运站的旅客服务质量,保障旅客候车安全。With the continuous improvement of railway transportation capacity,the frequency and time of passengers waiting for trains in railway passenger stations are also increasing.To actively explore the personalized needs of waiting passengers,this paper proposed a passenger attribute recognition method for railway passenger station based on the AL-Transformer(Attribute Localization Transformer)model.The paper used AL-Transformer model based on the Swin Transformer backbone network to extract structured information of passengers entering the stations,suppressed feature region correlation through the Mask Contrast Learning(MCL)framework to obtain more recognizable attribute regions,and used Attribute Spatial Memory(ASM)module to selecte more reliable and stable attribute related regions.The trial results at Baiyin South Station of CHINA RAILWAY Lanzhou Group show that this method can effectively identify passenger attributes,push more targeted information for station staff,improve the quality of passenger service at the station,and ensure the safety of passenger waiting.

关 键 词:属性识别 AL-Transformer模型 掩码对比学习(MCL) 属性空间记忆(ASM) 旅客异常行为 

分 类 号:U293.3[交通运输工程—交通运输规划与管理] TP39[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象