检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁凯 张巍 赵海军 LIANG Kai;ZHANG Wei;ZHAO Haijun(Information Technology Center,Luoyang Institute of Science and Technology,Luoyang 471023,China;National Joint Engineering Research Center of lntelligent Vehicle lnfrastructure Cooperation and Safety Technology,Tianjin University of Technology and Education,Tianjin 300222,China)
机构地区:[1]洛阳理工学院信息化技术中心,河南洛阳471023 [2]天津职业技术师范大学智能车路协同与安全技术国家地方联合工程研究中心,天津300222
出 处:《沈阳理工大学学报》2024年第2期89-96,共8页Journal of Shenyang Ligong University
基 金:国家自然科学基金项目(U1604141);中国高校产学研创新基金项目(2021ITA07021)。
摘 要:为提高电动汽车引擎拟音的个性化效果和质量,引入生成对抗网络(GAN)模型,构建了电动汽车的GAN主动发声模型,设计了模型中各层网络的结构和卷积核大小,利用自适应时刻估计算法优化网络各层权重,并将模型用于样本生成试验。在模型训练中提出一种相位扰动操作,用于解决上采样操作产生音调噪声的问题;为证明GAN模型中不同输入信号的性能差异,构建了基于二维声谱图输入的GAN模型,并用于对照试验。试验结果表明:模型可准确地学习到原始音频信号的特征分布;人耳听觉测试结果显示,生成的声音样本真实度在90%以上;基于留一法(LOO)的1-NN分类评价结果显示,原生音频和二维声谱图GAN模型的LOO精度均大于或接近50%,表明模型训练未产生过度拟合,采用本文方法生成音效真实可靠。To improve the personalization and quality of the sound imitation of electric vehicle engines,a generative adversarial networks(GAN)model was introduced to construct the GAN active sound model of electric vehicles.The structure of each layer of the network and the size of the convolution kernel in the model were designed.The adaptive moment estimation algorithm was used to optimize the weights of each layer in the network.The model was used for sample generation experiments.A phase perturbation operation was proposed in model training to solve the problem of pitch noise generated by the upsampling operation.In order to prove the performance of different input signals in the GAN model,a GAN model based on two-dimensional spectrogram input was constructed and used for controlled trials.The test results show that the model can accurately learn the feature distribution of the original audio signal.The human hearing test results show that the authenticity of the generated sound samples is more than 90%.The 1-NN classification evaluation results based on the leave-one-out method(LOO)show the LOO accuracy of the native audio and two-dimensional spectrogram GAN models are both greater than or close to 50%,indicating that model training does not produce overfitting,the method proposed in this paper is true and reliable in generating sound effects.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49