检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kaiyue Wang Yisen Zhong Meng Zhou
机构地区:[1]School of Oceanography,Shanghai Jiao Tong University,Shanghai 200030,China
出 处:《Acta Oceanologica Sinica》2023年第12期32-38,共7页海洋学报(英文版)
基 金:The National Natural Science Foundation of China under contract No.42276003;the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No.SL2021MS021.
摘 要:The southeastern Indian Ocean is characterized by the warm barrier layer(BL)underlying the cool mixed layer water in austral winter.This phenomenon lasts almost half a year and thus provides a unique positive effect on the upper mixed layer heat content through the entrainment processes at the base of the mixed layer,which has not been well evaluated due to the lack of proper method and dataset.Among various traditional threshold methods,here it is shown that the 5 m fixed depth difference can produce a reliable and accurate estimate of the entrainment heat flux(EHF)in this BL region.The comparison between the daily and monthly EHF warming indicates that the account for high-frequency EHF variability almost doubles the warming effect in the BL period,which can compensate for or even surpass the surface heat loss.This increased warming is a result of stronger relative rate of the mixed layer deepening and larger temperature differences between the mixed layer and its immediate below in the daily-resolving data.The interannual EHF shows a moderately increasing trend and similar variabilities to the Southern Annular Mode(SAM),likely because the mixed layer deepening under the positive SAM trend is accompanied by enhanced turbulent entrainment and thus increases the BL warming.
关 键 词:barrier layer mixed layer entrainment heat flux high-frequency variability southeastern Indian Ocean
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.102.140