联合对比学习的图神经网络会话推荐  

Graph Neural Network Session Recommendation Assisted with Contrastive Learning

在线阅读下载全文

作  者:刘乾 孙英娟[1] 邢晶淇 车志敏 LIU Qian;SUN Yingjuan;XING Jingqi;CHE Zhimin(College of Computer Science and Technology,Changchun Normal University,Changchun 130032,China;Changchun of No.103 Middle School,Changchun 130041,China)

机构地区:[1]长春师范大学计算机科学与技术学院,吉林长春130032 [2]长春市第一〇三中学,吉林长春130041

出  处:《长春师范大学学报》2024年第2期68-72,共5页Journal of Changchun Normal University

摘  要:基于会话的推荐(SBR)是一项具有挑战性的任务,其目的是根据匿名行为序列推荐项目。本文提出了一种新的方法,称为联合对比学习的图神经网络会话推荐(CLGNN),在图注意力机制的基础上,用对比学习辅助训练,以获得更好的推荐结果。具体来说,CLGNN首先在会话图上采用注意力机制学习项目嵌入,然后聚合会话内的项目生成会话嵌入,最后使用会话嵌入和候选项目嵌入计算分数生成推荐,同时使用对比学习优化项目嵌入空间。以几种常见的评价指标为依据,在真实的两个数据集上进行实验,结果表明本文模型推荐性能良好。Session based recommendation(SBR)is a challenging task aimed at recommending items based on anonymous behavior sequences.This article proposes a new method called Graph Neural Network Session Recommendation Assisted with Contrastive Learning(CLGNN).Based on the graph attention mechanism,contrastive learning is used to assist training in order to obtain better recommended results.Specifically,CLGNN uses attention mechanism to learn item embedding on the session graph,and then aggregates items within the session to generate session embedding.Finally,generate recommendations using session embedding and candidate item embedding to calculate scores.At the same time,contrastive learning is used to optimize item embedding space.Based on several common evaluation index methods,experiments were conducted on two real datasets,and the results showed that the model recommendation performance in this article is good.

关 键 词:会话推荐 图神经网络 对比学习 图注意力机制 

分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象