检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘家义 王刚[2] 夏智权 王思远 付强[2] LIU Jiayi;WANG Gang;XIA Zhiquan;WANG Siyuan;FU Qiang(Joint Operations College,National Defense University,Shijiazhuang 050000,China;Air and Missile Defense College,Air Force Engineering University,Xi'an 710051,China;Unit 93126 of PLA,Beijing 100000,China)
机构地区:[1]国防大学联合作战学院,石家庄050000 [2]空军工程大学防空反导学院,西安710051 [3]解放军93126部队,北京100000
出 处:《火力与指挥控制》2024年第1期43-48,55,共7页Fire Control & Command Control
基 金:国家自然科学基金资助项目(62106283)。
摘 要:随着作战双方不断采用新技术,信息时代的战争呈现出强博弈对抗性。在分析防空反导任务分配过程和决策的本质基础上,从敌我两个角度深入探讨了强博弈对抗环境下防空反导任务分配所面临的挑战。讨论了基于深度强化学习的防空反导智能任务分配方法的优势,提出了其实际应用所面临的问题,有望解决相关问题的技术途径和方法评价指标,为防空反导智能任务分配提供新思路。With the continuous adoption of new technologies by both combatants,warfare in the infor-mation age has taken on a strongly game-based adversarial nature.Based on the analysis of the process of air defence and anti-missile mission assignment and the nature of decision-making,the challenges faced by air defense and anti-missile mission assignment in a strong game confrontation environment are ex-plored in depth from both the perspectives of enemy and us.The advantages of the deep reinforcement learning-based intelligent task assignment method for air defense and anti-missile defense are discussed,and the key problems faced by the practical application of intelligent task allocation,the promising techni-cal ways to solve the relevant problems and the method evaluation indexes are proposed to provide new ideas for intelligent task assignment for air defense and anti-missile defense.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46