检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐文超 张思祥[1] 白芳[2] 赵涛[1] 伊纪禄 XU Wenchao;ZHANG Sixiang;BAI Fang;ZHAO Tao;YI Jilu(School of Mechanical Engineering,Hebei University of Technology,,Tianjin 300130,China;College of Information Engineering,Tianjin University of Commerce,Tianjin 300134,China;The 18th Research Institute of China Electronics Technology Group Corporation,Tianjin 300381,China)
机构地区:[1]河北工业大学机械工程学院,天津300130 [2]天津商业大学信息工程学院,天津300134 [3]中国电子科技集团公司第十八研究所,天津300381
出 处:《光电子.激光》2024年第2期180-190,共11页Journal of Optoelectronics·Laser
基 金:国家自然科学基金(61401307);“十三五”装备预研共用技术(41421070102)资助项目。
摘 要:为解决单体热电池生产中出现的安装错误、人工检测耗时耗力的问题,提出一个结合迁移学习和卷积神经网络(convolutional neural network, CNN)的单体热电池缺陷检测模型。首先,对数据集图像进行裁剪、加噪等预处理,以VGG16(visual geometry group 16)网络作为模型的骨干架构,在瓶颈层后增添选择性核(selective kernel, SK)卷积;然后,增添全局平均池化(global average pooling, GAP)层,增加Dropout层及添加L2正则化等微调操作,得到单体热电池缺陷检测模型Q-VGGNet;最后,在大型公开数据集ImageNet上进行预训练学习,将获得的权重参数迁移到单体热电池图像识别模型Q-VGGNet上。测试实验表明:6种网络模型对数据集缺陷图像的总体识别准确率分别达到了98.39%、94.44%、97.27%、96.34%、93.71%、95.61%,Q-VGGNet网络模型对合格图像和漏装负极、极耳断裂、漏装集流片3种缺陷图像识别准确率分别达到了99.6%,95.9%,99.6%和98.4%。检测结果表明:该方法能够更准确、快速地检测热电池缺陷,拥有良好的缺陷诊断能力,较传统方法提高近3%,为人工检测单体热电池缺陷提供了良好的解决途径。To solve the problems of installation errors,time and labor consuming of manual detection,an image recognition model for single thermal battery defects based on transfer learning and convolutional neural network(CNN)is proposed.First,the images of the dataset are preprocessed by cropping and adding noise,etc.The visual geometry group 16(VGG16)network is used as the backbone architecture of the model,and a selective kernel(SK)convolution is used after the bottleneck layer.Then,global average pooling(GAP)layer and Dropout layer are added,and L2 regularization and other fine-tuning operations are also added,an defect recognition model Q-VGGNet for single thermal battery is got.Finally,pre-training learning is performed on the dataset ImageNet,and the learned weight parameters are transferred to the model Q-VGGNet.The testing results show that the overall recognition accuracy of the six net-work models for the defect images on the dataset can reach 98.39%,94.44%,97.27%,96.34%,93.71%and 95.61%,respectively.The recognition accuracy rates of the Q-VGGNet network model for qualified images and the three types of defective images(negative electrode missing,tab broken,and current plate missing)can reach 99.6%,95.9%,99.6%and 98.4%,respectively.The results show that this method can detect thermal battery defects more accurately and quickly,and has good defect diagnosis ability.The accuracy is improved nearly 3%higher than the traditional method,and a good solution for manual detection of single thermal battery defects is provided.
关 键 词:迁移学习 VGG16网络 缺陷识别 单体热电池 选择性核(SK)卷积
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127