基于朴素贝叶斯分类的相位编码连续变量量子密钥分发方案  被引量:1

Phase-coded continuous-variable quantum key distribution scheme based on naive Bayes classification

在线阅读下载全文

作  者:韦世敏 王天一 WEI Shimin;WANG Tianyi(College of Big Data and Information Engineering,Guizhou University,Guiyang,Guizhou 550025,China)

机构地区:[1]贵州大学大数据与信息工程学院,贵州贵阳550025

出  处:《光电子.激光》2024年第2期216-224,共9页Journal of Optoelectronics·Laser

基  金:贵州省科技计划项目(黔科合基础-ZK[2021]一般304);贵州大学培育项目([2021]56号)资助项目。

摘  要:针对相位编码连续变量量子密钥分发(continous variable quantum key distribution, CVQKD)在远距离传输时,量子态在接收端的检测效率较低的问题,本文提出在接收端使用朴素贝叶斯(native Bayes, NB)分类器来改进系统性能。NB分类器首先对已标记类别的量子态进行训练,学习不同类别量子态的分布情况,计算每个类别的先验概率和似然概率,再基于先验概率和似然概率计算出待测量子态属于每个类别的后验概率,根据后验概率的大小来确定待测量子态的类别。仿真结果表明,改进方案可以通过降低测试态在接收端被错误测量的概率来提升系统性能,当过量噪声为0.01时,改进方案的安全距离可以突破250 km。In order to solve the problem that the detection efficiency of quantum states at the receiving end is low when phase coded continuous variable quantum key distribution(CVQKD)is transmitted over a long distance,this paper proposes to use naive Bayes classifier at the receiving end to improve the system performance.NB classifier first trains quantum states of labeled categories,learns the distribution of quantum states of different categories,calculates the prior probability and likelihood probability of each category,and then calculates the posterior probability of substates to be measured belonging to each category based on the prior probability and likelihood probability,and determines the category of substates to be measured according to the magnitude of the posterior probability.The simulation results show that the improved scheme can improve the system performance by reducing the probability of the test state being incorrectly measured at the receiving end.When the excess noise is 0.01,the safety distance of the improved scheme can exceed 250 km.

关 键 词:朴素贝叶斯(NB) 量子密钥分发 相位编码 安全密钥率 最大传输距离 

分 类 号:TN918.4[电子电信—通信与信息系统] O413[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象