检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱子敬 何利文 ZHU Zijing;HE Liwen(School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
机构地区:[1]南京邮电大学物联网学院,江苏南京210003
出 处:《软件工程》2024年第3期58-62,共5页Software Engineering
摘 要:针对金融时间序列数据的高噪声、时间依赖性等问题,提出了一种人工蜂群算法-长短期记忆-门控单元(ABC-LSTM-GRU)混合模型。该模型综合利用长短期记忆网络(LSTM)和门控循环单元(GRU)循环神经网络,更全面地捕捉时间序列中的长期和短期关系。在特征处理阶段,通过相关性分析对特征进行筛选,同时采用奇异谱分析(SSA)对数据进行分解,得到高频、中频和低频三个部分。在模型的超参数优化中,采用了改进后的人工蜂群算法(ABC),以提高模型的性能。为验证ABC-LSTM-GRU混合模型的有效性,选择NIFTY-50股票指数进行实证分析。实验结果对比显示,ABC-LSTM-GRU混合模型在时间序列预测方面的表现更佳,相较于LSTM与GRU模型,其在均方根误差(RMSE)指标上分别降低了28.3%与21.5%,显示出更为准确的预测性能。This paper proposes a hybrid model of Artificial Bee Colony-Long Short Term Memory-Gated Recurrent Unit(ABC-LSTM-GRU) to address the issues of high noise and time dependence of financial time series data.This model integrates LSTM and GRU networks to comprehensively capture the long and short term relationships in time series.In the feature processing stage,features are screened by correlation analysis,and the data is decomposed by Singular Spectrum Analysis(SSA) into three parts,high frequency,medium frequency and low frequency.In the hyperparameter optimization of the model,an improved Artificial Bee Colony(ABC) algorithm is used to improve the performance of the model.In order to verify the effectiveness of ABC-LSTM-GRU model,NIFTY-50 stock index is selected for empirical analysis.The comparison of experimental results shows that ABC-LSTM-GRU hybrid model has better performance in time series prediction,and compared with LSTM and GRU model,it reduces the Root Mean Square Error(RMSE) index by 28.3% and 21.5%,respectively,demonstrating more excellent prediction performance.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7