检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄婷 刘晋成 李会琳 吴怡雯 郁尔 季锴 唐少文 赵杨 戴俊程 易洪刚[3] HUANG Ting;LIU Jincheng;LI Huilin;WU Yiwen;YU Er;JI Kai;TANG Shaowen;ZHAO Yang;DAI Juncheng;YI Honggang(Department of Biostatistics,School of Public Health,Nanjing Medical University,Nanjing 211166,China;Department of Epidemiology,School of Public Health,Nanjing Medical University,Nanjing 211166,China;Key Laboratory of Biomedical Big Data,Cancer Individualized Medicine Collaborative Innovation Center,Nanjing Medical University,Nanjing 211166,China)
机构地区:[1]南京医科大学公共卫生学院生物统计学系,南京211166 [2]南京医科大学公共卫生学院流行病学系,南京211166 [3]南京医科大学生物医学大数据重点实验室,肿瘤个体化医学协同创新中心,南京211166
出 处:《中华疾病控制杂志》2024年第1期117-121,共5页Chinese Journal of Disease Control & Prevention
基 金:国家自然科学基金(81941020);大学生创新创业训练计划项目(202210312151)。
摘 要:目的探讨单效应汇总(sum of single effects,SuSiE)回归模型在多组学数据共定位分析中的应用。方法以多组学模拟数据为例,介绍单效应汇总回归模型的基本原理和R软件分析。结果SuSiE回归模型通过利用单核苷酸多态性(single nucleotide polymorphism,SNPs)位点之间因连锁不平衡(linkage disequilibrium,LD)产生的相关性,允许在有多个因果变异的情况下,正确识别两个组学数据与表型相关的共定位点。结论相对于传统方法,SuSiE回归模型拓展了单一因果变异假设这一适用条件,且计算效率较高,从而有助于利用多组学数据检测多个潜在与疾病相关联位点。Objective To explore the application of the sum of single effects(SuSiE)regression model for colocalization analysis with multi⁃omics data.Methods Taking the simulated data as an example,we introduced the basic principle of SuSiE regression model and the statistical analysis procedures using R software.Results The results showed that the SuSiE regression model could identify the shared casual variants as associated with traits through taking account the linkage disequilibrium(LD)between single nucleotide polymorphisms(SNPs).Despite the presence of multiple causal variants,the colocalization results were still stable.Conclusions Compared with those traditional approaches for colocalization,SuSiE regression model expands the applicability of the single causal variant hypothesis and it has higher computational efficiency,thus helping to detect multiple potential shared casual variants using multi⁃omics data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7