检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yannick Ureel Maarten R.Dobbelaere Yi Ouyang Kevin De Ras Maarten K.Sabbe Guy B.Marin Kevin M.Van Geem
出 处:《Engineering》2023年第8期23-30,共8页工程(英文)
基 金:financial support from the Fund for Scientific Research Flanders(FWO Flanders)through the doctoral fellowship grants(1185822N,1S45522N,and 3F018119);funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(818607)。
摘 要:By combining machine learning with the design of experiments,thereby achieving so-called active machine learning,more efficient and cheaper research can be conducted.Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering.While active machine learning algorithms are maturing,their applications are falling behind.In this article,three types of challenges presented by active machine learning—namely,convincing the experimental researcher,the flexibility of data creation,and the robustness of active machine learning algorithms—are identified,and ways to overcome them are discussed.A bright future lies ahead for active machine learning in chemical engineering,thanks to increasing automation and more efficient algorithms that can drive novel discoveries.
关 键 词:Active machine learning Active learning Bayesian optimization Chemical engineering Design of experiments
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49