基于多视图自编码器的多被试者脑影像功能校准  

Multi-view Autoencoder-based Functional Alignment of Multi-subject fMRI

在线阅读下载全文

作  者:黄硕 孙亮 汪美玲 张道强[1,2] HUANG Shuo;SUN Liang;WANG Meiling;ZHANG Daoqiang(Key Laboratory of Brain-Machine Intelligence Technology Ministry of Education,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)

机构地区:[1]南京航空航天大学脑机智能技术教育部重点实验室,南京211106 [2]南京航空航天大学计算机科学与技术学院,南京211106

出  处:《计算机科学》2024年第3期141-146,共6页Computer Science

基  金:国家自然科学基金(62136004,61732006,62006115,62106104);国家重点研发计划(2018YFC2001600,2018YFC2001602);中国博士后科学基金(2022T150320);中国人工智能协会(CAAI)-华为MindSpore开放基金。

摘  要:功能磁共振成像(functional Magnetic Resonance Imaging,fMRI)研究面临的主要挑战之一是不同被试者fMRI数据的异质性。一方面,多被试数据分析对于确定所生成结果跨被试的通用性和有效性至关重要。另一方面,分析多被试者fMRI数据需要在不同被试者的神经活动之间进行准确的解剖和功能校准,以提升最终结果的性能。然而,现有大多数功能校准研究都采用浅层模型来处理多被试者间的复杂关系,这严重束缚了多被试信息的建模能力。为此,提出了一种基于多视图自编码器的功能校准(Multi-view Auto-encoder Functional Alignment,MAFA)方法。具体地,该方法通过重构不同被试者的响应空间来学习节点嵌入,捕获不同被试者之间共享的特征表示,从而创建一个公共的响应空间。此外,通过引入自训练聚类目标,利用高置信度节点作为软标签来监督图聚类过程。在4个数据集上的实验结果表明,相比其他多被试者脑影像功能校准方法,所提方法在解码精度方面取得了最佳效果。One of the major challenges in functional magnetic resonance imaging(fMRI)research is the heterogeneity of fMRI data across different subjects.On the one hand,analyzing multi-subject data is crucial for determining the generalizability and effectiveness of the generated results across subjects.On the other hand,analyzing multi-subject fMRI data requires accurate anatomical and functional alignment among the neural activities of different subjects to enhance the performance of the final results.However,most existing functional alignment studies employ shallow models to handle the complex relationships among multiple subjects,severely limiting the modeling capacity for multi-subject information.To solve this problem,this paper proposes a multi-view auto-encoder functional alignment(MAFA)method based on multi-view auto-encoders.Specifically,our method learns node embedding by reconstructing the response spaces of different subjects,capturing shared feature representations among subjects,and creating a common response space.We also introduce the graph clustering process by introducing self-training clustering objectives using high-confidence nodes as soft labels.Experimental results on four datasets demonstrate that the proposed method achieves the best decoding accuracy compared to other multi-subject fMRI functional alignment methods.

关 键 词:功能磁共振成像 功能校准 多视图表示学习 多被试分析 脑解码 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象