碳达峰约束下电动汽车在线充电调度算法  

Online Electric Vehicle Charging Algorithm Based on Carbon Peak Constraint

在线阅读下载全文

作  者:曹永胜 刘洋[1,2] 王永全[1] 夏天[3] CAO Yongsheng;LIU Yang;WANG Yongquan;XIA Tian(Department of Intelligent Science and Information Law,East China University of Political Science and Law,Shanghai,201620,China;Shanghai Jiao Tong University Intelligent Court Research Institute,Shanghai,200240,China;School of Computer and Information Engineering,Shanghai Polytechnic University,Shanghai,201209,China)

机构地区:[1]华东政法大学智能科学与信息法学系,上海201620 [2]上海交通大学智慧法院研究院,上海200240 [3]上海第二工业大学计算机与信息工程学院,上海201209

出  处:《计算机科学》2024年第3期265-270,共6页Computer Science

基  金:上海市科技创新行动计划启明星项目(扬帆专项)(22YF1411900);第四批中国博士后科学基金特别资助项目(2022TQ0210);国家社会科学基金(20&ZD199);教育部人文社会科学研究项目(20YJC820030);国家社科基金重大项目(21&ZD200);国家重点研发计划重点专项课题(2023YFC3306103,2023YFC3306105)。

摘  要:随着电动汽车数量的增加,电动汽车充电对社区电网总负荷和碳排放量产生了很大的影响,导致社区电网不太稳定,降低了电能质量。文中基于碳达峰的约束条件,研究了未提前知晓电动汽车到达时间、出发时间和充电需求等情况下的电动汽车充电碳排放问题。首先,建立了电动汽车充电碳排放问题,并在未来信息未知的情况下进行了研究。针对电动汽车充电行为的不确定性,提出了一种改进型演员-评论家的智能充电碳排放算法。该算法采用的是连续碳排放动作的电动汽车充电碳排放策略,而不是离散近似碳排放动作。仿真结果表明,相比OA和AEM两个基准算法,所提算法能够降低电动汽车预期成本约24.03%和21.49%。With the increasing number of electric vehicles(EVs),EV charging significantly increases the total load of the community,greatly increases the carbon emissions of the community,brings great instability to the community power grid,and reduces the power quality of the community.This paper studies the problem of scheduling EV charging based on the constraints of carbon peak when the arrival time,departure time,and charging demand of EVs are not known in advance.First,we formulate and study the problem of charging EVs without knowing future information.Aiming to address the uncertainty of EV charging behavior,we propose an algorithm for intelligent charging carbon emissions using the actor-critic approach,which learns the optimal strategy for EV charging through continuous charging instead of using a discrete approximation of carbon emissions.Simulation results demonstrate that compared with the online charging algorithm and the AEM energy management algorithm,the proposed algorithm can reduce the expected cost by 24.03%and 21.49%.

关 键 词:碳达峰 电动汽车 不确定性 在线充电 能量管理 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象