检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩旭东[1,2] 张广智 刘飞[3] 郭彦民[3] 刘太伟[3] 杜磊 朱孔斌[3] 徐帅 HAN Xudong;ZHANG Guangzhi;LIU Fei;GUO Yanmin;LIU Taiwei;DU Lei;ZHU Kongbin;XU Shuai(Seventh Oil Production Plant of Changqing Oilfield Branch Company of China National Petroleum Corporation,Xi'an 710200,Shaanxi,China;School of Geosciences,China University of Petroleum School,Qingdao 266580,Shandong,China;Exploration and Development Research Institute of Liaohe Oilfield Branch Company of China National Petroleum Corporation,Panjin 124010,Liaoning,China)
机构地区:[1]中国石油大学(华东)深层油气重点实验室,山东青岛266580 [2]中国石油大学(华东)地球科学与技术学院,山东青岛266580 [3]中国石油天然气股份有限公司辽河油田分公司勘探开发研究院,辽宁盘锦124010
出 处:《矿产与地质》2024年第1期195-204,共10页Mineral Resources and Geology
基 金:国家自然科学基金项目(编号:42074136,U23B6010);国家科技重大专项(编号:2016ZX05002-005);中国石油大学(华东)研究生创新基金(编号:YCX2020014)等共同资助。
摘 要:由于孔渗统计回归和测井解释方法在致密砂岩储层参数预测中表现不佳,人工智能方法被广泛应用于致密砂岩储层参数预测中。然而,可用的岩心数据很难满足人工智能大量学习样本的要求。因此,提出了基于高斯混合模型的虚拟样本生成方法,以解决缺乏训练样本的问题。该算法的通过拟合原始样本的分布来生成虚拟样本,填充了小样本数据之间的信息缺失。通过标准函数测试,该方法能有效生成训练数据,实际工区孔隙度和渗透率预测对比试验表明,经过虚拟样本扩充数据集后,模型的预测准确率分别提高了9.7%和18.6%,表明所提出的方法可以有效地提高小样本条件下的模型预测精度。Due to the poor performance of pore permeability statistical regression and logging interpretation method in predicting parameters of tight sandstone reservoirs,artificial intelligence methods are widely used in predicting parameters of tight sandstone reservoirs.However,the available core data is difficult to meet the requirements of artificial intelligence for learning a large number of samples.Therefore,a virtual sample generation method based on Gaussian mixture model is proposed to solve the problem of lacking training samples.This algorithm generates virtual samples by fitting the distribution of the original samples,filling in the information gaps between small sample data.Through standard function testing,this method can effectively generate training data.Comparative experiments on predicting porosity and permeability in actual work areas show that after expanding the dataset with virtual samples,the prediction accuracy of the model has increased by 9.7%and 18.6%,respectively.This indicates that the proposed method can effectively improve the prediction accuracy of the model under small sample condition.
关 键 词:储层参数预测 高斯混合模型 虚拟样本生成 深度学习
分 类 号:P618.130.21[天文地球—矿床学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91