检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱宗玖[1] 王宁 ZHU Zongjiu;WANG Ning(School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
机构地区:[1]安徽理工大学电气与信息工程学院,安徽淮南232001
出 处:《安徽理工大学学报(自然科学版)》2023年第6期82-91,共10页Journal of Anhui University of Science and Technology:Natural Science
基 金:安徽省自然科学基金资助项目(1808085MF169);安徽高校自然科学研究项目(KJ2018A0086)。
摘 要:为了增强相位敏感光时域反射仪(Φ-OTDR)系统对不同扰动事件的识别能力,提出了一种基于快速自适应多元经验模态分解(FA-MVEMD)样本熵和非洲秃鹫算法优化支持向量机(AOVA-SVM)的光纤振动信号模式识别算法。光纤振动信号经FA-MVEMD分解后得到若干多元本征模态函数(IMF),通过计算与原始信号的相关系数,筛选出相关系数大于0.1的有效分量并计算其样本熵作为信号的特征,最后利用AOVA-SVM分类模型进行识别。实验结果表明,相比于其他SVM分类模型,AOVA-SVM的分类准确率更高,对6种事件的平均分类准确率达到了97.5%,实现了Φ-OTDR系统模式识别的既定目标,具有实用价值。In order to enhance the recognition ability of phase sensitive optical time domain reflectometer(Φ-OTDR)system for different disturbance events,a mode recognition algorithm of optical fiber vibration signal based on fast and adaptive multivariate empirical mode decomposition(FA-MVEMD)sample entropy and African vulture algorithm optimized support vector machine(AOVA-SVM)was proposed.The fiber vibration signal was decomposed by FA-MVEMD to obtain several multivariate intrinsic mode functions(IMF).By calculating the correlation coefficient with the original signal,the effective components with correlation coefficient greater than 0.1 were selected and the sample entropy was calculated as the signal feature.Finally,the AOVA-SVM classification model was used for recognition.The experimental results showed that the classification accuracy of AOVA-SVM was higher than other SVM classification models,and the average classification accuracy of six events reached 97.5%,which realized the established goal of the pattern recognition ofΦ-OTDR system and had practical value.
关 键 词:模式识别 快速自适应多元经验模态分解 样本熵 秃鹫优化算法 支持向量机
分 类 号:TN247[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.229.23