检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢心喻 王晓放[1] 郝祎琛 赵普 谢蓉[1] 刘海涛[1] XIE Xinyu;WANG Xiaofang;HAO Yichen;ZHAO Pu;XIE Rong;LIU Haitao(School of Energy and Power Engineering,Dalian University of Technology,Dalian 116024,China)
机构地区:[1]大连理工大学能源与动力学院,大连116024
出 处:《工程热物理学报》2024年第2期446-452,共7页Journal of Engineering Thermophysics
基 金:国家重点研发计划资助(No.2020YFA0714403);国家自然科学基金青年项目资助(No.52005074);中央高校基本科研业务费资助(No.DUT19RC(3)070)。
摘 要:气固流化床在化工、冶金及制药等领域得到了广泛的研究与应用。对流化床内气固两相流的动力学行为进行深入研究有利于流化床设备的设计和性能优化。本文利用深度学习技术构建了数据驱动的全三维深度时空序列模型,对流化床内气固两相流三维空间和时间维度的复杂动力学行为进行学习,并实现了对未知来流速度条件下流化床内气相和颗粒相速度场的合理预测。测试结果表明,该全三维智能模型的预测结果与CFD计算结果高度一致,具有较好的泛化能力;此外,该模型比传统的数值仿真速度快数百倍,可以用于流场的快速预测,以缓解数值仿真耗时问题。Gas-solid fluidized beds have been widely studied and applied in chemical,metallurgical and pharmaceutical fields.An in-depth study of the kinetic behavior of gas-solid two-phase flow in fluidized beds is beneficial to the design and performance optimization of fluidized bed equipments.In this study,a data-driven full 3D deep time-series model is constructed using the deep learning technology to learn the complex kinetic behavior of 3D gas-solid two-phase temporal flow fields in the fluidized bed.With this model,it is able to achieve a reasonable prediction of the velocity fields of gas and particle phases in the fluidized bed under unknown incoming flow velocity conditions.The test results show that the prediction results of this full 3D intelligent model are highly consistent with the CFD calculation results,and have good generalization ability.In addition,the model is hundreds of times faster than the traditional numerical simulation and can be used for fast prediction of the flow field to alleviate the time-consuming issue of numerical simulation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.70.17