Noah-MP陆面过程模式在雅鲁藏布江流域径流模拟中的适用性评估  被引量:2

Assessment of runoff simulation in the Yarlung Zangbo River Basin based on the multi-physics Noah-MP land surface model

在线阅读下载全文

作  者:杨恒 雷享勇 郑辉[3] 费雯丽 刘志武 林佩蓉 Heng Yang;Xiangyong Lei;Hui Zheng;Wenli Fei;Zhiwu Liu;Peirong Lin(Research Institute of China Three Gorges Corporation,Beijing 100038,China;Institute of Remote Sensing and GIS,School of Earth and Space Sciences,Peking University,Beijing 100871,China;Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China)

机构地区:[1]中国长江三峡集团有限公司科学技术研究院,北京100038 [2]北京大学地球与空间科学学院,遥感与地理信息系统研究所,北京100871 [3]中国科学院大气物理研究所,北京100029

出  处:《科学通报》2024年第4期630-644,共15页Chinese Science Bulletin

基  金:中国长江三峡集团有限公司科研项目(202203003);北京大学中央高校基本科研业务费(7100604136);国家自然科学基金(U2240202)资助。

摘  要:雅鲁藏布江(以下简称雅江)流域的气象水文模拟是当前全球变化研究的热点与难点.Noah-MP(the Noah land surface model with multi-parameterizations)陆面过程模式作为该区域气象水文双向耦合过程的重要数值模拟工具,鲜有研究针对其径流模拟能力进行过系统性评估,限制了模式在该区域的水文应用.本研究基于中国区域地面气象要素数据集CMFD(China Meteorological Forcing Dataset)驱动Noah-MP模式,对雅江流域2000~2018年的径流进行时空分辨率为3 h/5 km的数值模拟;选取与流域径流产生机制相关的10个主要物理过程,评估了16种参数化方案组合对于径流模拟的影响,并确定了最优参数化方案组合.结果表明:(1)采用默认参数化方案,Noah-MP在奴下站的月尺度模拟纳什效率系数NSE(Nash-Sutcliffe efficiency)为0.23、偏差百分比PBias为–35.79%,而采用基于临界温度的雨雪分离方案、改进的二流近似辐射传输方案以及基于BATS的产流方案后,PBias分别减少至–23.36%、3.85%、–17.19%,NSE分别提高至0.37、0.58、0.60,显著优于默认方案;(2)进一步基于优选方案进行组合,奴下、羊村、奴各沙的月尺度径流NSE分别提高至0.89、0.87、0.81,而最上游拉孜站NSE仅为–0.06,低于个别方案,这表明拉孜流域的产流机制可能不同于下游流域.研究结果表明,无参数率定的Noah-MP模式在雅江径流模拟中的表现较为优异,具有较高的应用潜力,未来可通过进一步改进雨雪分离、辐射传输、产流过程的参数化方案来提高模式在高寒区的径流模拟能力.Yarlung Zangbo River Basin (YZRB) is one of the highest basins in the world. Runoff in YZRB plays an important role inhydropower production and fresh water supply for millions of people in Asia. Land surface models (LSMs) are importanttools for coupled hydrometeorological simulation and forecasting in this region. However, accurate runoff simulation overYZRB presents huge challenges due to the uncertainties in meteorological forcing and the highly complex runoffgeneration mechanisms in the basin (e.g., snowmelt, glacier melt, permafrost freeze/thaw, groundwater, and monsoonrunoff).In this study, we systematically assess the runoff simulation skill of a physically-based land surface model named themulti-physics Noah land surface model (Noah-MP) over the YZRB. Runoff from 2000 to 2018 is simulated at a spatiotemporal resolution of 5 km and three hours forced by the Chinese Meteorological Forcing Dataset (CMFD). The simulatedrunoff is evaluated at four sub-basin outlets (i.e., Lazi, Nugesha, Yangcun and Nuxia) with respect to the Nash-Sutcliffeefficiency (NSE) and percentage bias (PBias) skill metrics. Our study features the assessment of ten physicalparameterization schemes that are the most influential to runoff generation in the YZRB;they include: (1) Precipitationrelated parameterization scheme (PPS) that concerns the precipitation partitioning into rainfall and snowfall, (2)evapotranspiration-related parameterization schemes (EPS) that describe the canopy stomatal resistance, soil moisturefactor controlling stomatal resistance, surface drag, radiative transfer processes, and (3) runoff-related parameterizationschemes (RPS) that describe snow albedo, frozen soil permeability, supercooled liquid water in frozen soil, glacier, runoffprocesses.Our results showed that the default parameterization scheme by Noah-MP only achieves a monthly NSE and PBias of0.23 and –35.79% at Nuxia. Turning to the third option of precipitation partitioning (PTP_3), the modified two-streamradiative transfer parameterization scheme (RA

关 键 词:陆面过程模式 参数化方案 雅鲁藏布江流域 径流模拟 适用性 

分 类 号:P333.1[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象